SpatialCells: automated profiling of tumor microenvironments with spatially resolved multiplexed single-cell data

被引:0
|
作者
Wan, Guihong [1 ,2 ]
Maliga, Zoltan [3 ]
Yan, Boshen
Vallius, Tuulia [4 ]
Shi, Yingxiao [5 ]
Khattab, Sara [6 ]
Chang, Crystal
Nirmal, Ajit J. [2 ,7 ]
Yu, Kun-Hsing [8 ]
Liu, David [9 ,10 ,11 ]
Lian, Christine G. [12 ,13 ]
DeSimone, Mia S. [10 ,13 ]
Sorger, Peter K. [14 ]
Semenov, Yevgeniy R. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dermatol, Boston, MA USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Harvard Med Sch, Lab Syst Pharmacol, Tissue Imaging Platform, Boston, MA 02114 USA
[4] Harvard Med Sch, Dept Syst Biol, Lab Syst Pharmacol, Boston, MA 02114 USA
[5] Harvard Univ, Biol & Biomed Sci Program, Cambridg, MA USA
[6] Massachusetts Gen Hosp, Boston, MA USA
[7] Brigham & Womens Hosp, Dept Dermatol, Boston, MA USA
[8] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02114 USA
[9] Dana Farber Canc Inst, Boston, MA USA
[10] Brigham & Womens Hosp, Boston, MA USA
[11] Harvard Med Sch, Med, Boston, MA 02114 USA
[12] Mass Gen Brigham, Boston, MA USA
[13] Harvard Med Sch, Pathol, Boston, MA 02114 USA
[14] Harvard Med Sch, Dept Syst Biol, Syst Pharmacol, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
spatial analysis; region-based profiling; multiplexed single-cell data; spatial omics; tumor immune infiltration; tumor microenvironment; MELANOMA; RECURRENCE; ATLAS;
D O I
10.1093/bib/bbae189
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A single-cell and spatially resolved atlas of human osteosarcomas
    Zheng, Xuejing
    Liu, Xu
    Zhang, Xinxin
    Zhao, Zhenguo
    Wu, Wence
    Yu, Shengji
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2024, 17 (01)
  • [22] Single-cell and spatially resolved transcriptomics for liver biology
    Lin, Ping
    Yan, Xi
    Jing, Siyu
    Wu, Yanhong
    Shan, Yiran
    Guo, Wenbo
    Gu, Jin
    Li, Yu
    Zhang, Haibing
    Li, Hong
    HEPATOLOGY, 2024, 80 (03) : 698 - 720
  • [23] A SINGLE-CELL AND SPATIALLY RESOLVED ATLAS OF LUPUS NEPHRITIS
    Wang, J.
    Chen, Z.
    Li, X.
    Wang, G.
    Kun, Q.
    Guo, C.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 1252 - 1252
  • [24] Single-cell and spatially resolved omics: Advances and limitations
    Chen, Jiaye
    Wang, Yongcheng
    Ko, Jina
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (08) : 833 - 835
  • [25] Technique integration of single-cell RNA sequencing with spatially resolved transcriptomics in the tumor microenvironment
    Yan, Hailan
    Shi, Jinghua
    Dai, Yi
    Li, Xiaoyan
    Wu, Yushi
    Zhang, Jing
    Gu, Zhiyue
    Zhang, Chenyu
    Leng, Jinhua
    CANCER CELL INTERNATIONAL, 2022, 22 (01)
  • [26] Technique integration of single-cell RNA sequencing with spatially resolved transcriptomics in the tumor microenvironment
    Hailan Yan
    Jinghua Shi
    Yi Dai
    Xiaoyan Li
    Yushi Wu
    Jing Zhang
    Zhiyue Gu
    Chenyu Zhang
    Jinhua Leng
    Cancer Cell International, 22
  • [27] Spatially resolved single-cell translatomics at molecular resolution
    Zeng, Hu
    Huang, Jiahao
    Ren, Jingyi
    Wang, Connie Kangni
    Tang, Zefang
    Zhou, Haowen
    Zhou, Yiming
    Shi, Hailing
    Aditham, Abhishek
    Sui, Xin
    Chen, Hongyu
    Lo, Jennifer A.
    Wang, Xiao
    SCIENCE, 2023, 380 (6652) : 1337 - +
  • [28] Spatially resolved single-cell genomics and transcriptomics by imaging
    Zhuang, Xiaowei
    NATURE METHODS, 2021, 18 (01) : 18 - 22
  • [29] Spatially resolved single-cell genomics and transcriptomics by imaging
    Xiaowei Zhuang
    Nature Methods, 2021, 18 : 18 - 22
  • [30] Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    Genshaft, Alex S.
    Li, Shuqiang
    Gallant, Caroline J.
    Darmanis, Spyros
    Prakadan, Sanjay M.
    Ziegler, Carly G. K.
    Lundberg, Martin
    Fredriksson, Simon
    Hong, Joyce
    Regev, Aviv
    Livak, Kenneth J.
    Landegren, Ulf
    Shalek, Alex K.
    GENOME BIOLOGY, 2016, 17