SpatialCells: automated profiling of tumor microenvironments with spatially resolved multiplexed single-cell data

被引:0
|
作者
Wan, Guihong [1 ,2 ]
Maliga, Zoltan [3 ]
Yan, Boshen
Vallius, Tuulia [4 ]
Shi, Yingxiao [5 ]
Khattab, Sara [6 ]
Chang, Crystal
Nirmal, Ajit J. [2 ,7 ]
Yu, Kun-Hsing [8 ]
Liu, David [9 ,10 ,11 ]
Lian, Christine G. [12 ,13 ]
DeSimone, Mia S. [10 ,13 ]
Sorger, Peter K. [14 ]
Semenov, Yevgeniy R. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dermatol, Boston, MA USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Harvard Med Sch, Lab Syst Pharmacol, Tissue Imaging Platform, Boston, MA 02114 USA
[4] Harvard Med Sch, Dept Syst Biol, Lab Syst Pharmacol, Boston, MA 02114 USA
[5] Harvard Univ, Biol & Biomed Sci Program, Cambridg, MA USA
[6] Massachusetts Gen Hosp, Boston, MA USA
[7] Brigham & Womens Hosp, Dept Dermatol, Boston, MA USA
[8] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02114 USA
[9] Dana Farber Canc Inst, Boston, MA USA
[10] Brigham & Womens Hosp, Boston, MA USA
[11] Harvard Med Sch, Med, Boston, MA 02114 USA
[12] Mass Gen Brigham, Boston, MA USA
[13] Harvard Med Sch, Pathol, Boston, MA 02114 USA
[14] Harvard Med Sch, Dept Syst Biol, Syst Pharmacol, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
spatial analysis; region-based profiling; multiplexed single-cell data; spatial omics; tumor immune infiltration; tumor microenvironment; MELANOMA; RECURRENCE; ATLAS;
D O I
10.1093/bib/bbae189
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.
引用
收藏
页数:9
相关论文
共 50 条
  • [2] Spatially resolved single-cell metabolic profiling of the melanoma tumor microenvironment using Multiplexed Ion Beam Imaging (MIBI)
    Truxa, Sven
    Melanie, Wiecken
    Jessica, Hassel
    Felix, Hartmann
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 1741 - 1741
  • [3] Multiplexed laser particles for spatially resolved single-cell analysis
    Sheldon J. J. Kwok
    Nicola Martino
    Paul H. Dannenberg
    Seok-Hyun Yun
    Light: Science & Applications, 8
  • [4] Multiplexed laser particles for spatially resolved single-cell analysis
    Kwok, Sheldon J. J.
    Martino, Nicola
    Dannenberg, Paul H.
    Yun, Seok-Hyun
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [5] Annotation of spatially resolved single-cell data with STELLAR
    Brbic, Maria
    Cao, Kaidi
    Hickey, John W.
    Tan, Yuqi
    Snyder, Michael P.
    Nolan, Garry P.
    Leskovec, Jure
    NATURE METHODS, 2022, 19 (11) : 1411 - +
  • [6] Annotation of spatially resolved single-cell data with STELLAR
    Maria Brbić
    Kaidi Cao
    John W. Hickey
    Yuqi Tan
    Michael P. Snyder
    Garry P. Nolan
    Jure Leskovec
    Nature Methods, 2022, 19 : 1411 - 1418
  • [7] Spatially and Single-Cell Resolved Profiling of RNA Life Cycle and Epitranscriptomics
    Zhou, Qiyang
    Guo, Jianting
    Wang, Xiao
    ISRAEL JOURNAL OF CHEMISTRY, 2024, 64 (05)
  • [8] Spatially resolved, highly multiplexed RNA profiling in single cells
    Chen, Kok Hao
    Boettiger, Alistair N.
    Moffitt, Jeffrey R.
    Wang, Siyuan
    Zhuang, Xiaowei
    SCIENCE, 2015, 348 (6233)
  • [9] A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution
    Bortolomeazzi, Michele
    Montorsi, Lucia
    Temelkovski, Damjan
    Keddar, Mohamed Reda
    Acha-Sagredo, Amelia
    Pitcher, Michael J.
    Basso, Gianluca
    Laghi, Luigi
    Rodriguez-Justo, Manuel
    Spencer, Jo
    Ciccarelli, Francesca D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution
    Michele Bortolomeazzi
    Lucia Montorsi
    Damjan Temelkovski
    Mohamed Reda Keddar
    Amelia Acha-Sagredo
    Michael J. Pitcher
    Gianluca Basso
    Luigi Laghi
    Manuel Rodriguez-Justo
    Jo Spencer
    Francesca D. Ciccarelli
    Nature Communications, 13