No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation

被引:0
|
作者
Hsieh, Yu-Guan [1 ]
Antonakopoulos, Kimon [2 ]
Cevher, Volkan [2 ]
Mertikopoulos, Panayotis [1 ,3 ,4 ]
机构
[1] Univ Grenoble Alpes, Grenoble, France
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] CNRS, Inria, LIG, Paris, France
[4] Criteo AI Lab, Ann Arbor, MI USA
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully adversarial environments. We study this problem in the context of variationally stable games (a class of continuous games which includes all convex-concave and monotone games), and when the players only have access to noisy estimates of their individual payoff gradients. If the noise is additive, the game-theoretic and purely adversarial settings enjoy similar regret guarantees; however, if the noise is multiplicative, we show that the learners can, in fact, achieve constant regret. We achieve this faster rate via an optimistic gradient scheme with learning rate separation - that is, the method's extrapolation and update steps are tuned to different schedules, depending on the noise profile. Subsequently, to eliminate the need for delicate hyperparameter tuning, we propose a fully adaptive method that attains nearly the same guarantees as its non-adapted counterpart, while operating without knowledge of either the game or of the noise profile.
引用
收藏
页数:13
相关论文
共 37 条
  • [11] No-regret learning for repeated concave games with lossy bandits
    Liu, Wenting
    Lei, Jinlong
    Yi, Peng
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 936 - 941
  • [12] Near-Optimal No-Regret Learning in General Games
    Daskalakis, Constantinos
    Fishelson, Maxwell
    Golowich, Noah
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [13] No-Regret Learning for Stackelberg Equilibrium Computation in Newsvendor Pricing Games
    Liu, Larkin
    Rong, Yuming
    ALGORITHMIC DECISION THEORY, ADT 2024, 2025, 15248 : 297 - 297
  • [14] Risk-Averse No-Regret Learning in Online Convex Games
    Wang, Zifan
    Shen, Yi
    Zavlanos, Michael M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [15] Distributed No-Regret Learning for Stochastic Aggregative Games over Networks
    Lei, Jinlong
    Yi, Peng
    Li, Li
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7512 - 7519
  • [16] No-regret algorithms in on-line learning, games and convex optimization
    Sorin, Sylvain
    MATHEMATICAL PROGRAMMING, 2024, 203 (1-2) : 645 - 686
  • [17] On the Convergence of No-Regret Learning Dynamics in Time-Varying Games
    Anagnostides, Ioannis
    Panageas, Ioannis
    Farina, Gabriele
    Sandholm, Tuomas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [18] No-Regret Distributed Learning in Subnetwork Zero-Sum Games
    Huang, Shijie
    Lei, Jinlong
    Hong, Yiguang
    Shanbhag, Uday V.
    Chen, Jie
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) : 6620 - 6635
  • [19] Tight last-iterate convergence rates for no-regret learning in multi-player games
    Golowich, Noah
    Pattathil, Sarath
    Daskalakis, Constantinos
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [20] No-regret algorithms in on-line learning, games and convex optimization
    Sylvain Sorin
    Mathematical Programming, 2024, 203 : 645 - 686