Entropic Neural Optimal Transport via Diffusion Processes

被引:0
|
作者
Gushchin, Nikita [1 ]
Kolesov, Alexander [1 ]
Korotin, Alexander [1 ,2 ]
Vetrov, Dmitry [2 ,3 ]
Burnaev, Evgeny [1 ,2 ]
机构
[1] Skoltech, Moscow, Russia
[2] AIRI, Moscow, Russia
[3] HSE Univ, Moscow, Russia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schrodinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks. The code for the ENOT solver can be found at https://github.com/ngushchin/EntropicNeuralOptimalTransport.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Geometric Neural Diffusion Processes
    Mathieu, Emile
    Dutordoir, Vincent
    Hutchinson, Michael J.
    De Bortoli, Valentin
    Teh, Yee Whye
    Turner, Richard E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [42] Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding
    Bachoc, Francois
    Suvorikova, Alexandra
    Ginsbourger, David
    Loubes, Jean-Michel
    Spokoiny, Vladimir
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 2742 - 2772
  • [43] FAST ENTROPIC REGULARIZED OPTIMAL TRANSPORT USING SEMIDISCRETE COST APPROXIMATION
    Tenetov, Evgeny
    Wolansky, Gershon
    Kimmel, Ron
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A3400 - A3422
  • [44] Modular neural network task decomposition via entropic clustering
    Santos, Jorge M.
    Alexandre, Luis A.
    de Sa, Joaquirn Marques
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 62 - 67
  • [45] Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks
    Eckstein, Stephan
    Kupper, Michael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (02): : 639 - 667
  • [46] Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks
    Stephan Eckstein
    Michael Kupper
    Applied Mathematics & Optimization, 2021, 83 : 639 - 667
  • [47] OPTIMAL STOPPING RULES FOR DIFFUSION PROCESSES WITH SMALL DIFFUSION
    BEYER, D
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1977, (03): : 24 - 29
  • [48] ENTROPIC CHARACTERIZATION OF DIFFUSION
    STOOP, R
    STEEB, WH
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1994, 49 (12): : 1215 - 1218
  • [49] Entropic Characterisation of Diffusion
    Stoop, R.
    Steeb, W.-H.
    Zeitschrift fuer Naturforschung. Section A: Physical Sciences, 1994, 49 (12):
  • [50] Diffusion by optimal transport in Heisenberg groups
    Nicolas Juillet
    Calculus of Variations and Partial Differential Equations, 2014, 50 : 693 - 721