Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding

被引:9
|
作者
Bachoc, Francois [1 ]
Suvorikova, Alexandra [2 ,3 ]
Ginsbourger, David [4 ,5 ]
Loubes, Jean-Michel [1 ]
Spokoiny, Vladimir [2 ,3 ,6 ,7 ]
机构
[1] Inst Math Toulouse, Toulouse, France
[2] Weierstrass Inst, Berlin, Germany
[3] IITP RAS, Moscow, Russia
[4] Univ Bern, Idiap Res Inst, Bern, Switzerland
[5] Univ Bern, IMSV, Bern, Switzerland
[6] HU Berlin, Berlin, Germany
[7] HSE Moscow, Moscow, Russia
来源
ELECTRONIC JOURNAL OF STATISTICS | 2020年 / 14卷 / 02期
基金
俄罗斯科学基金会; 瑞士国家科学基金会;
关键词
Kernel methods; Wasserstein distance; Hilbert space embeddings; COMPUTER EXPERIMENTS; BARYCENTERS; MODEL;
D O I
10.1214/20-EJS1725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we propose a way to construct Gaussian processes indexed by multidimensional distributions. More precisely, we tackle the problem of defining positive definite kernels between multivariate distributions via notions of optimal transport and appealing to Hilbert space embeddings. Besides presenting a characterization of radial positive definite and strictly positive definite kernels on general Hilbert spaces, we investigate the statistical properties of our theoretical and empirical kernels, focusing in particular on consistency as well as the special case of Gaussian distributions. A wide set of applications is presented, both using simulations and implementation with real data.
引用
收藏
页码:2742 / 2772
页数:31
相关论文
共 25 条
  • [1] Optimal Transport Between Gaussian Stationary Processes
    Zorzi, Mattia
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (10) : 4939 - 4944
  • [2] Gaussian Processes on Distributions based on Regularized Optimal Transport
    Bachoc, Francois
    Bethune, Louis
    Gonzalez-Sanz, Alberto
    Loubes, Jean-Michel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [3] Adapted optimal transport between Gaussian processes in discrete time
    Gunasingam, Madhu
    Wong, Ting-Kam Leonard
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2025, 30
  • [4] Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
    Izmailov, Pavel A.
    Novikov, Alexander V.
    Kropotov, Dmitry A.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [5] Gaussian mixtures closest to a given measure via optimal transport
    Lasserre, Jean B.
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [6] Improving Textual Network Embedding with Global Attention via Optimal Transport
    Chen, Liqun
    Wang, Guoyin
    Tao, Chenyang
    Shen, Dinghan
    Cheng, Pengyu
    Zhang, Xinyuan
    Wang, Wenlin
    Zhang, Yizhe
    Carin, Lawrence
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5193 - 5202
  • [7] Distribution-on-distribution regression via optimal transport maps
    Ghodrati, Laya
    Panaretos, Victor M.
    BIOMETRIKA, 2022, 109 (04) : 957 - 974
  • [8] Entropic Neural Optimal Transport via Diffusion Processes
    Gushchin, Nikita
    Kolesov, Alexander
    Korotin, Alexander
    Vetrov, Dmitry
    Burnaev, Evgeny
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Exact simulation of complex-valued Gaussian stationary processes via circulant embedding
    Percival, Donald B.
    SIGNAL PROCESSING, 2006, 86 (07) : 1470 - 1476
  • [10] DISPERSIVE HOPPING TRANSPORT VIA SITES HAVING A GAUSSIAN DISTRIBUTION OF ENERGIES
    SCHONHERR, G
    BASSLER, H
    SILVER, M
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1981, 44 (01): : 47 - 61