Entropic Neural Optimal Transport via Diffusion Processes

被引:0
|
作者
Gushchin, Nikita [1 ]
Kolesov, Alexander [1 ]
Korotin, Alexander [1 ,2 ]
Vetrov, Dmitry [2 ,3 ]
Burnaev, Evgeny [1 ,2 ]
机构
[1] Skoltech, Moscow, Russia
[2] AIRI, Moscow, Russia
[3] HSE Univ, Moscow, Russia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schrodinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks. The code for the ENOT solver can be found at https://github.com/ngushchin/EntropicNeuralOptimalTransport.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Shrinking VOD Traffic via Renyi-Entropic Optimal Transport
    Lo, Chi-Jen
    Marina, Mahesh K.
    Sastry, Nishanth
    Xu, Kai
    Fadaei, Saeed
    Li, Yong
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2024, 8 (01)
  • [2] ASYMPTOTICS FOR SEMIDISCRETE ENTROPIC OPTIMAL TRANSPORT*
    Altschuler, Jason M.
    Niles-Weed, Jonathan
    Stromme, Austin J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 1718 - 1741
  • [3] Displacement smoothness of entropic optimal transport
    Carlier, Guillaume
    Chizat, Lenaic
    Laborde, Maxime
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [4] Entropic Approximation of ∞-Optimal Transport Problems
    Brizzi, Camilla
    Carlier, Guillaume
    De Pascale, Luigi
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (01):
  • [5] Entropic optimal transport: convergence of potentials
    Nutz, Marcel
    Wiesel, Johannes
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 401 - 424
  • [6] Entropic Optimal Transport on Random Graphs
    Keriven, Nicolas
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2023, 5 (04): : 1028 - 1050
  • [7] ON THE SAMPLE COMPLEXITY OF ENTROPIC OPTIMAL TRANSPORT
    Igollet, Philippe
    Tromme, Austin j.
    ANNALS OF STATISTICS, 2025, 53 (01): : 61 - 90
  • [8] Entropic optimal transport: convergence of potentials
    Marcel Nutz
    Johannes Wiesel
    Probability Theory and Related Fields, 2022, 184 : 401 - 424
  • [9] Shrinking VOD Traffic via Rényi-Entropic Optimal Transport
    Lo C.-J.
    Marina M.K.
    Sastry N.
    Xu K.
    Fadaei S.
    Li Y.
    Performance Evaluation Review, 2024, 52 (01): : 75 - 76
  • [10] Training Generative Models From Privatized Data via Entropic Optimal Transport
    Reshetova, Daria
    Chen, Wei-Ning
    Ozgur, Ayfer
    IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2024, 5 : 221 - 235