Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions

被引:0
|
作者
Lotter, William [1 ,2 ,3 ]
Hassett, Michael J. [3 ,4 ,5 ]
Schultz, Nikolaus [6 ,7 ]
Kehl, Kenneth L. [3 ,4 ,5 ]
Van Allen, Eliezer M. [3 ,4 ,5 ,8 ]
Cerami, Ethan [1 ,9 ]
机构
[1] Dana Farber Canc Inst, Dept Data Sci, 450 Brookline Ave, Boston, MA 02215 USA
[2] Brigham & Womens Hosp, Dept Pathol, Boston, MA USA
[3] Harvard Med Sch, Boston, MA USA
[4] Dana Farber Canc Inst, Div Populat Sci, Boston, MA USA
[5] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[6] Mem Sloan Kettering Canc Ctr, Marie Josee & Henry R Kravis Ctr Mol Oncol, New York, NY USA
[7] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY USA
[8] Broad Inst MIT & Harvard, Canc Program, Cambridge, MA USA
[9] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
COMPUTER-AIDED DETECTION; TUMOR-INFILTRATING LYMPHOCYTES; MULTIMODAL DATA INTEGRATION; CANCER CLINICAL-TRIALS; PROSTATE-CANCER; LUNG-CANCER; SYSTEM; DISPARITIES; MEDICINE; IMPROVES;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) in oncology is advancing beyond algorithm development to integration into clinical practice. This review describes the current state of the field, with a specific focus on clinical integration. AI applications are structured according to cancer type and clinical domain, focusing on the four most common cancers and tasks of detection, diagnosis, and treatment. These applications encompass various data modalities, including imaging, genomics, and medical records. We conclude with a summary of existing challenges, evolving solutions, and potential future directions for the field.Significance: AI is increasingly being applied to all aspects of oncology, where several applications are maturing beyond research and development to direct clinical integration. This review summarizes the current state of the field through the lens of clinical translation along the clinical care continuum. Emerging areas are also highlighted, along with common challenges, evolving solutions, and potential future directions for the field.
引用
收藏
页码:711 / 726
页数:16
相关论文
共 50 条
  • [1] Artificial Intelligence in Oncology: Current Applications and Future Directions
    Kann, Benjamin H.
    Thompson, Reid
    Thomas, Charles R., Jr.
    Dicker, Adam
    Aneja, Sanjay
    [J]. ONCOLOGY-NEW YORK, 2019, 33 (02): : 46 - +
  • [2] Current Challenges and Future Research Directions in Multimodal Explainable Artificial Intelligence
    Rodis, Nikolaos
    Sardianos, Christos
    Papadopoulos, Georgios Th.
    [J]. ERCIM NEWS, 2023, (134):
  • [3] Artificial intelligence and dermatology: opportunities, challenges, and future directions
    Schlessinger, Daniel I.
    Chhor, Guillaume
    Gevaert, Olivier
    Swetter, Susan M.
    Ko, Justin
    Novoa, Roberto A.
    [J]. SEMINARS IN CUTANEOUS MEDICINE AND SURGERY, 2019, 38 (01) : E31 - E37
  • [4] Artificial intelligence in glaucoma: opportunities, challenges, and future directions
    Huang, Xiaoqin
    Islam, Md Rafiqul
    Akter, Shanjita
    Ahmed, Fuad
    Kazami, Ehsan
    Serhan, Hashem Abu
    Abd-alrazaq, Alaa
    Yousefi, Siamak
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [5] Artificial intelligence in glaucoma: opportunities, challenges, and future directions
    Xiaoqin Huang
    Md Rafiqul Islam
    Shanjita Akter
    Fuad Ahmed
    Ehsan Kazami
    Hashem Abu Serhan
    Alaa Abd-alrazaq
    Siamak Yousefi
    [J]. BioMedical Engineering OnLine, 22
  • [6] Artificial intelligence in computational pathology - challenges and future directions
    Morales, Sandra
    Engan, Kjersti
    Naranjo, Valery
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 119
  • [7] Artificial intelligence in computational pathology – challenges and future directions
    Morales, Sandra
    Engan, Kjersti
    Naranjo, Valery
    [J]. Digital Signal Processing: A Review Journal, 2021, 119
  • [8] Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions
    Toro-Tobon, David
    Loor-Torres, Ricardo
    Duran, Mayra
    Fan, Jungwei W.
    Ospina, Naykky Singh
    Wu, Yonghui
    Brito, Juan P.
    [J]. THYROID, 2023, 33 (08) : 903 - 917
  • [9] Artificial Intelligence in Oncology: Applications, Challenges and Future Frontiers
    Alsharif, Fatmah
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICAL INVESTIGATION, 2024, 14 (03) : 647 - 656
  • [10] Artificial Intelligence in Neuroradiology: Current Status and Future Directions
    Lui, Y. W.
    Chang, P. D.
    Zaharchuk, G.
    Barboriak, D. P.
    Flanders, A. E.
    Wintermark, M.
    Hess, C. P.
    Filippi, C. G.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (08) : E52 - E59