Current Challenges and Future Research Directions in Multimodal Explainable Artificial Intelligence

被引:0
|
作者
Rodis, Nikolaos [1 ]
Sardianos, Christos [2 ]
Papadopoulos, Georgios Th.
机构
[1] Univ Athens, Zografos, Greece
[2] Harokopio Univ Athens, Kallithea, Greece
来源
ERCIM NEWS | 2023年 / 134期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As Artificial Intelligence (AI) continues to advance and find applications in various domains, the need for explainable AI becomes crucial. In the field of multimodal explainable AI (MXAI), which deals with multiple types of data, challenges arise in defining terminology, utilizing attention mechanisms, generalizing methods, extending explanations to more modalities, estimating causal explanations, and removing bias. Addressing these challenges is essential for improving transparency and trustworthiness in critical domains like healthcare.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions
    Lotter, William
    Hassett, Michael J.
    Schultz, Nikolaus
    Kehl, Kenneth L.
    Van Allen, Eliezer M.
    Cerami, Ethan
    [J]. CANCER DISCOVERY, 2024, 14 (05) : 711 - 726
  • [2] Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions
    Sebastian, Anu Maria
    Peter, David
    [J]. LIFE-BASEL, 2022, 12 (12):
  • [3] Explainable Multimodal Learning in Remote Sensing: Challenges and Future Directions
    Guenther, Alexander
    Najjar, Hiba
    Dengel, Andreas
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [4] Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions
    Longo, Luca
    Brcic, Mario
    Cabitza, Federico
    Choi, Jaesik
    Confalonieri, Roberto
    Del Ser, Javier
    Guidotti, Riccardo
    Hayashi, Yoichi
    Herrera, Francisco
    Holzinger, Andreas
    Jiang, Richard
    Khosravi, Hassan
    Lecue, Freddy
    Malgieri, Gianclaudio
    Paez, Andres
    Samek, Wojciech
    Schneider, Johannes
    Speith, Timo
    Stumpf, Simone
    [J]. INFORMATION FUSION, 2024, 106
  • [5] Explainable artificial intelligence in information systems: A review of the status quo and future research directions
    Brasse, Julia
    Broder, Hanna Rebecca
    Foerster, Maximilian
    Klier, Mathias
    Sigler, Irina
    [J]. ELECTRONIC MARKETS, 2023, 33 (01)
  • [6] Explainable artificial intelligence in information systems: A review of the status quo and future research directions
    Julia Brasse
    Hanna Rebecca Broder
    Maximilian Förster
    Mathias Klier
    Irina Sigler
    [J]. Electronic Markets, 2023, 33
  • [7] Explainable and secure artificial intelligence: taxonomy, cases of study, learned lessons, challenges and future directions
    Eldrandaly, Khalid A.
    Abdel-Basset, Mohamed
    Ibrahim, Mahmoud
    Abdel-Aziz, Nabil M.
    [J]. ENTERPRISE INFORMATION SYSTEMS, 2023, 17 (09)
  • [8] Artificial intelligence in prostate cancer: Definitions, current research, and future directions
    George, Rose S.
    Htoo, Arkar
    Cheng, Michael
    Masterson, Timothy M.
    Huang, Kun
    Adra, Nabil
    Kaimakliotis, Hristos Z.
    Akgul, Mahmut
    Cheng, Liang
    [J]. UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2022, 40 (06) : 262 - 270
  • [9] Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions
    Atakishiyev, Shahin
    Salameh, Mohammad
    Yao, Hengshuai
    Goebel, Randy
    [J]. IEEE ACCESS, 2024, 12 : 101603 - 101625
  • [10] Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions
    Kumar, Pranjal
    Chauhan, Siddhartha
    Awasthi, Lalit Kumar
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 120