Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions

被引:0
|
作者
Lotter, William [1 ,2 ,3 ]
Hassett, Michael J. [3 ,4 ,5 ]
Schultz, Nikolaus [6 ,7 ]
Kehl, Kenneth L. [3 ,4 ,5 ]
Van Allen, Eliezer M. [3 ,4 ,5 ,8 ]
Cerami, Ethan [1 ,9 ]
机构
[1] Dana Farber Canc Inst, Dept Data Sci, 450 Brookline Ave, Boston, MA 02215 USA
[2] Brigham & Womens Hosp, Dept Pathol, Boston, MA USA
[3] Harvard Med Sch, Boston, MA USA
[4] Dana Farber Canc Inst, Div Populat Sci, Boston, MA USA
[5] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA USA
[6] Mem Sloan Kettering Canc Ctr, Marie Josee & Henry R Kravis Ctr Mol Oncol, New York, NY USA
[7] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY USA
[8] Broad Inst MIT & Harvard, Canc Program, Cambridge, MA USA
[9] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
COMPUTER-AIDED DETECTION; TUMOR-INFILTRATING LYMPHOCYTES; MULTIMODAL DATA INTEGRATION; CANCER CLINICAL-TRIALS; PROSTATE-CANCER; LUNG-CANCER; SYSTEM; DISPARITIES; MEDICINE; IMPROVES;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) in oncology is advancing beyond algorithm development to integration into clinical practice. This review describes the current state of the field, with a specific focus on clinical integration. AI applications are structured according to cancer type and clinical domain, focusing on the four most common cancers and tasks of detection, diagnosis, and treatment. These applications encompass various data modalities, including imaging, genomics, and medical records. We conclude with a summary of existing challenges, evolving solutions, and potential future directions for the field.Significance: AI is increasingly being applied to all aspects of oncology, where several applications are maturing beyond research and development to direct clinical integration. This review summarizes the current state of the field through the lens of clinical translation along the clinical care continuum. Emerging areas are also highlighted, along with common challenges, evolving solutions, and potential future directions for the field.
引用
收藏
页码:711 / 726
页数:16
相关论文
共 50 条
  • [31] Artificial Intelligence in Spinal Imaging: Current Status and Future Directions
    Cui, Yangyang
    Zhu, Jia
    Duan, Zhili
    Liao, Zhenhua
    Wang, Song
    Liu, Weiqiang
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (18)
  • [32] Artificial Intelligence for Psychotherapy: A Review of the Current State and Future Directions
    Beg, Mirza Jahanzeb
    Verma, Mohit
    M., Vishvak Chanthar K. M.
    Verma, Manish Kumar
    [J]. INDIAN JOURNAL OF PSYCHOLOGICAL MEDICINE, 2024,
  • [33] Artificial intelligence and robotic surgery: current perspective and future directions
    Bhandari, Mahendra
    Zeffiro, Trevor
    Reddiboina, Madhu
    [J]. CURRENT OPINION IN UROLOGY, 2020, 30 (01) : 48 - 54
  • [34] Artificial Intelligence in Musculoskeletal Imaging: Current Status and Future Directions
    Gyftopoulos, Soterios
    Lin, Dana
    Knoll, Florian
    Doshi, Ankur M.
    Rodrigues, Tatiane Cantarelli
    Recht, Michael P.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (03) : 506 - 513
  • [35] Future Directions in Artificial Intelligence
    Saboury, Babak
    Morris, Michael
    Siegel, Eliot
    [J]. RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (06) : 1085 - 1095
  • [36] Artificial intelligence for clinical oncology: current status and future outlook
    Jiang, Yuming
    Li, Ruijiang
    Li, Guoxin
    [J]. SCIENCE BULLETIN, 2023, 68 (05) : 448 - 451
  • [37] Application of Artificial Intelligence to Network Forensics: Survey, Challenges and Future Directions
    Rizvi, Syed
    Scanlon, Mark
    McGibney, Jimmy
    Sheppard, John
    [J]. IEEE ACCESS, 2022, 10 : 110362 - 110384
  • [38] Challenges for future directions for artificial intelligence integrated nursing simulation education
    Jung, Sunyoung
    [J]. KOREAN JOURNAL OF WOMEN HEALTH NURSING, 2023, 29 (03): : 239 - 242
  • [39] Artificial intelligence in retinal disease: clinical application, challenges, and future directions
    Varela, Malena Daich
    Sen, Sagnik
    De Guimaraes, Thales Antonio Cabral
    Kabiri, Nathaniel
    Pontikos, Nikolas
    Balaskas, Konstantinos
    Michaelides, Michel
    [J]. GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2023, 261 (11) : 3283 - 3297
  • [40] Artificial intelligence in retinal disease: clinical application, challenges, and future directions
    Malena Daich Varela
    Sagnik Sen
    Thales Antonio Cabral De Guimaraes
    Nathaniel Kabiri
    Nikolas Pontikos
    Konstantinos Balaskas
    Michel Michaelides
    [J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261 : 3283 - 3297