Boosting High-Voltage Practical Lithium Metal Batteries with Tailored Additives

被引:0
|
作者
Jinhai You [1 ,2 ]
Qiong Wang [3 ,4 ]
Runhong Wei [2 ]
Li Deng [3 ]
Yiyang Hu [1 ]
Li Niu [2 ]
Jingkai Wang [5 ]
Xiaomei Zheng [5 ]
Junwei Li [6 ]
Yao Zhou [1 ]
JunTao Li [1 ]
机构
[1] College of Energy, Xiamen University
[2] Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy
[3] State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University
[4] College of Chemistry and Chemical Engineering, Northwest Normal University
[5] Magnetism Key Laboratory of Zhejiang Province, College of Materials and Chemistry, China Jiliang University
[6] Department of Chemical
关键词
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
摘要
The lithium(Li) metal anode is widely regarded as an ideal anode material for high-energy-density batteries. However, uncontrolled Li dendrite growth often leads to unfavorable interfaces and low Coulombic efficiency(CE), limiting its broader application. Herein, an ether-based electrolyte(termed FGN-182) is formulated, exhibiting ultra-stable Li metal anodes through the incorporation of Li FSI and LiNO3 as dual salts. The synergistic effect of the dual salts facilitates the formation of a highly robust SEI film with fast Li+ transport kinetics. Notably, Li||Cu half cells exhibit an average CE reaching up to 99.56%. In particular, pouch cells equipped with high-loading lithium cobalt oxide(LCO, 3 m Ah cm-2) cathodes, ultrathin Li chips(25 μm), and lean electrolytes(5 g Ah-1) demonstrate outstanding cycling performance, retaining 80% capacity after 125 cycles. To address the gas issue in the cathode under high voltage, cathode additives 1,3,6-tricyanohexane is incorporated with FGN-182; the resulting high-voltage LCO||Li(4.4 V) pouch cells can cycle steadily over 93 cycles. This study demonstrates that, even with the use of ether-based electrolytes, it is possible to simultaneously achieve significant improvements in both high Li utilization and electrolyte tolerance to high voltage by exploring appropriate functional additives for both the cathode and anode.
引用
收藏
页码:31 / 49
页数:19
相关论文
共 50 条
  • [21] Crossover effects of transition metal ions in high-voltage lithium metal batteries
    Li, Wanxia
    Jie, Yulin
    Chen, Yunhua
    Yang, Ming
    Chen, Yawei
    Li, Xinpeng
    Guo, Youzhang
    Meng, Xianhui
    Cao, Ruiguo
    Jiao, Shuhong
    NANO RESEARCH, 2023, 16 (06) : 8417 - 8424
  • [22] Progresses on advanced electrolytes engineering for high-voltage lithium metal batteries
    Dai, Shuaikang
    Fang, Wenqiang
    Wang, Tianxiang
    Gao, Yuanhang
    Zhang, Tao
    Qin, Zuosu
    Chen, Gen
    Zhou, Xiaozhong
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [23] Progresses on advanced electrolytes engineering for high-voltage lithium metal batteries
    Dai, Shuaikang
    Fang, Wenqiang
    Wang, Tianxiang
    Gao, Yuanhang
    Zhang, Tao
    Qin, Zuosu
    Chen, Gen
    Zhou, Xiaozhong
    Chemical Engineering Journal, 1600, 500
  • [24] Fluorinated Cyclic Ether Diluent for High-Voltage Lithium Metal Batteries
    Lee, Kyunam
    Kwon, Sun-Hyun
    Kim, Jisub
    Park, Eunseok
    Kim, Inwoo
    Ahn, Hyo Chul
    Coskun, Ali
    Choi, Jang Wook
    ACS ENERGY LETTERS, 2024, 9 (05) : 2201 - 2211
  • [25] Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    Jiao, Shuhong
    Ren, Xiaodi
    Cao, Ruiguo
    Engelhard, Mark H.
    Liu, Yuzi
    Hu, Dehong
    Mei, Donghai
    Zheng, Jianming
    Zhao, Wengao
    Li, Qiuyan
    Liu, Ning
    Adams, Brian D.
    Ma, Cheng
    Liu, Jun
    Zhang, Ji-Guang
    Xu, Wu
    NATURE ENERGY, 2018, 3 (09): : 739 - 746
  • [26] Methylation enables high-voltage ether electrolytes for lithium metal batteries
    Li, Ai-Min
    Wang, Chunsheng
    NATURE CHEMISTRY, 2024, 16 (06) : 852 - 853
  • [27] Building Practical High-Voltage Cathode Materials for Lithium-Ion Batteries
    Xiang, Jingwei
    Wei, Ying
    Zhong, Yun
    Yang, Yan
    Cheng, Hang
    Yuan, Lixia
    Xu, Henghui
    Huang, Yunhui
    ADVANCED MATERIALS, 2022, 34 (52)
  • [28] Strongly Solvating Ether Electrolytes for High-Voltage Lithium Metal Batteries
    Chen, Shunqiang
    Zhu, Weiduo
    Tan, Lijiang
    Ruan, Digen
    Fan, JiaJia
    Chen, Yunhua
    Meng, Xianhui
    Nian, Qingshun
    Zhao, Xin
    Jiang, Jinyu
    Wang, Zihong
    Jiao, Shuhong
    Wu, Xiaojun
    Ren, Xiaodi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (10) : 13155 - 13164
  • [29] Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    Shuhong Jiao
    Xiaodi Ren
    Ruiguo Cao
    Mark H. Engelhard
    Yuzi Liu
    Dehong Hu
    Donghai Mei
    Jianming Zheng
    Wengao Zhao
    Qiuyan Li
    Ning Liu
    Brian D. Adams
    Cheng Ma
    Jun Liu
    Ji-Guang Zhang
    Wu Xu
    Nature Energy, 2018, 3 : 739 - 746
  • [30] Solvation-Tailored PVDF-Based Solid-State Electrolyte for High-Voltage Lithium Metal Batteries
    Yang, Wujie
    Liu, Yiwen
    Sun, Xinyi
    He, Zhiying
    He, Ping
    Zhou, Haoshen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (18)