Self-Reciprocal Polynomials of Binomial Type

被引:0
|
作者
Qin FANG Tian Ming WANG School of Mathematical Sciences Dalian University of Technology Liaoning P R China [116024 ]
机构
关键词
D O I
暂无
中图分类号
O174.14 [多项式理论];
学科分类号
摘要
In this paper, we define the self-inverse sequences related to sequences of polynomials of binomial type, and give some interesting results of these sequences. Moreover, we study the self-inverse sequences related to the Laguerre polynomials.
引用
收藏
页码:628 / 636
页数:9
相关论文
共 50 条
  • [31] Construction of self-reciprocal normal polynomials over finite fields of even characteristic
    Alizadeh, Mahmood
    Mehrabi, Saeid
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (02) : 259 - 267
  • [32] On the derivative of a self-reciprocal polynomial
    Jain, Vinay Kumar
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (02): : 193 - 196
  • [33] An inverse problem for a class of canonical systems and its applications to self-reciprocal polynomials
    Suzuki, Masatoshi
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 136 (01): : 273 - 340
  • [34] Expected Number of Real Zeros of Gaussian Self-Reciprocal Random Algebraic Polynomials
    Soudabeh Shemehsavar
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 105 - 113
  • [35] SELF-RECIPROCAL FOURIER FUNCTIONS
    COFFEY, MW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (09): : 2453 - 2455
  • [36] s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones
    Beck, Matthias
    Braun, Benjamin
    Koeppe, Matthias
    Savage, Carla D.
    Zafeirakopoulos, Zafeirakis
    RAMANUJAN JOURNAL, 2015, 36 (1-2): : 123 - 147
  • [37] Expected Number of Real Zeros of Gaussian Self-Reciprocal Random Algebraic Polynomials
    Shemehsavar, Soudabeh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A1): : 105 - 113
  • [38] An inverse problem for a class of canonical systems and its applications to self-reciprocal polynomials
    Masatoshi Suzuki
    Journal d'Analyse Mathématique, 2018, 136 : 273 - 340
  • [39] On the parity of the number of irreducible factors of self-reciprocal polynomials over finite fields
    Ahmadi, Omran
    Vega, Gerardo
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) : 124 - 131
  • [40] s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones
    Matthias Beck
    Benjamin Braun
    Matthias Köppe
    Carla D. Savage
    Zafeirakis Zafeirakopoulos
    The Ramanujan Journal, 2015, 36 : 123 - 147