s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones

被引:0
|
作者
Matthias Beck
Benjamin Braun
Matthias Köppe
Carla D. Savage
Zafeirakis Zafeirakopoulos
机构
[1] San Francisco State University,Department of Mathematics
[2] University of Kentucky,Department of Mathematics
[3] University of California,Department of Mathematics
[4] Davis,Department of Computer Science
[5] North Carolina State University,Research Institute for Symbolic Computation
[6] Johannes Kepler University,undefined
来源
The Ramanujan Journal | 2015年 / 36卷
关键词
Lecture hall partition; Polyhedral cone; Generating function; Gorenstein; Self-reciprocal polynomial; 05A17; 05A19; 52B11; 13A02; 13H10;
D O I
暂无
中图分类号
学科分类号
摘要
In 1997, Bousquet-Mélou and Eriksson initiated the study of lecture hall partitions, a fascinating family of partitions that yield a finite version of Euler’s celebrated odd/distinct partition theorem. In subsequent work on s-lecture hall partitions, they considered the self-reciprocal property for various associated generating functions, with the goal of characterizing those sequences s that give rise to generating functions of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$((1-q^{e_{1}})(1-q^{e_{2}}) \cdots(1-q^{e_{n}}))^{-1}$\end{document}.
引用
收藏
页码:123 / 147
页数:24
相关论文
共 40 条
  • [1] s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones
    Beck, Matthias
    Braun, Benjamin
    Koeppe, Matthias
    Savage, Carla D.
    Zafeirakopoulos, Zafeirakis
    RAMANUJAN JOURNAL, 2015, 36 (1-2): : 123 - 147
  • [2] On self-reciprocal polynomials
    Abdul Aziz
    B. A. Zargar
    Proceedings - Mathematical Sciences, 1997, 107 : 197 - 199
  • [3] On self-reciprocal polynomials
    Aziz, A
    Zargar, BA
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 197 - 199
  • [4] Self-reciprocal polynomials and coterm polynomials
    Neranga Fernando
    Designs, Codes and Cryptography, 2018, 86 : 1707 - 1726
  • [5] Self-reciprocal polynomials and coterm polynomials
    Fernando, Neranga
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (08) : 1707 - 1726
  • [6] Generalizations of self-reciprocal polynomials
    Mattarei, Sandro
    Pizzato, Marco
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 271 - 288
  • [7] SOME PROPERTIES OF SELF-RECIPROCAL POLYNOMIALS
    HONG, SJ
    BOSSEN, DC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (04) : 462 - 464
  • [8] Integral inequalities for self-reciprocal polynomials
    Horst Alzer
    Proceedings - Mathematical Sciences, 2010, 120 : 131 - 137
  • [9] ON SOME COMBINATIONS OF SELF-RECIPROCAL POLYNOMIALS
    Kim, Seon-Hong
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (01): : 175 - 183
  • [10] Integral inequalities for self-reciprocal polynomials
    Alzer, Horst
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (02): : 131 - 137