s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones

被引:0
|
作者
Matthias Beck
Benjamin Braun
Matthias Köppe
Carla D. Savage
Zafeirakis Zafeirakopoulos
机构
[1] San Francisco State University,Department of Mathematics
[2] University of Kentucky,Department of Mathematics
[3] University of California,Department of Mathematics
[4] Davis,Department of Computer Science
[5] North Carolina State University,Research Institute for Symbolic Computation
[6] Johannes Kepler University,undefined
来源
The Ramanujan Journal | 2015年 / 36卷
关键词
Lecture hall partition; Polyhedral cone; Generating function; Gorenstein; Self-reciprocal polynomial; 05A17; 05A19; 52B11; 13A02; 13H10;
D O I
暂无
中图分类号
学科分类号
摘要
In 1997, Bousquet-Mélou and Eriksson initiated the study of lecture hall partitions, a fascinating family of partitions that yield a finite version of Euler’s celebrated odd/distinct partition theorem. In subsequent work on s-lecture hall partitions, they considered the self-reciprocal property for various associated generating functions, with the goal of characterizing those sequences s that give rise to generating functions of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$((1-q^{e_{1}})(1-q^{e_{2}}) \cdots(1-q^{e_{n}}))^{-1}$\end{document}.
引用
收藏
页码:123 / 147
页数:24
相关论文
共 40 条