A computation of two-loop six-point Feynman integrals in dimensional regularization

被引:3
|
作者
Henn, Johannes [1 ]
Matijasic, Antonela [1 ]
Miczajka, Julian [1 ]
Peraro, Tiziano [2 ,3 ]
Xu, Yingxuan [4 ]
Zhang, Yang [5 ,6 ]
机构
[1] Werner Heisenberg Inst, Max Planck Inst Phys, Boltzmannstr 8, D-85748 Garching, Germany
[2] Univ Bologna, Dipartimento Fis & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[3] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy
[4] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[5] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[6] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
来源
基金
欧洲研究理事会;
关键词
Higher-Order Perturbative Calculations; Scattering Amplitudes; Differential and Algebraic Geometry; DIFFERENTIAL-EQUATIONS; PARTS;
D O I
10.1007/JHEP08(2024)027
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute three families of two-loop six-point massless Feynman integrals in dimensional regularization, namely the double-box, the pentagon-triangle, and the hegaxon-bubble family. This constitutes the first analytic computation of two-loop master integrals with eight scales. We use the method of canonical differential equations. We describe the corresponding integral basis with uniform transcendentality, the relevant function alphabet, and analytic boundary values at a particular point in the Euclidean region up to the fourth order in the regularization parameter & varepsilon;. The results are expressed as one-fold integrals over classical polylogarithms. We provide a set of supplementary files containing our results in machine-readable form, including a proof-of-concept implementation for numerical evaluations of the one-fold integrals valid within a subset of the Euclidean region.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] ε-factorized differential equations for two-loop non-planar triangle Feynman integrals with elliptic curves
    Jiang, Xuhang
    Wang, Xing
    Yang, Li Lin
    Zhao, Jingbang
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [32] ε-factorized differential equations for two-loop non-planar triangle Feynman integrals with elliptic curves
    Xuhang Jiang
    Xing Wang
    Li Lin Yang
    Jingbang Zhao
    Journal of High Energy Physics, 2023
  • [33] The imaginary part of the N=4 Super-Yang-Mills two-loop six-point MHV amplitude in multi-Regge kinematics
    Schabinger, Robert M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (11):
  • [34] Two-loop beta functions without Feynman diagrams
    Phys Rev Lett, 19 (3573):
  • [35] Two-loop beta functions without Feynman diagrams
    Haagensen, PE
    Olsen, K
    Schiappa, R
    PHYSICAL REVIEW LETTERS, 1997, 79 (19) : 3573 - 3576
  • [36] Towards a basis for planar two-loop integrals
    Gluza, Janusz
    Kajda, Krzysztof
    Kosower, David A.
    PHYSICAL REVIEW D, 2011, 83 (04):
  • [37] Numerical evaluation of two-loop integrals in FDR
    Tom J.E. Zirke
    Journal of High Energy Physics, 2016
  • [38] NUMERICAL EVALUATION OF TWO-LOOP INTEGRALS WITH pySecDec
    Borowka, S.
    Heinrich, G.
    Jahn, S.
    Jones, S. P.
    Kerner, M.
    Schlenk, J.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2018, 11 (02) : 375 - 385
  • [39] Two-loop sunset integrals at finite volume
    Johan Bijnens
    Emil Boström
    Timo A. Lähde
    Journal of High Energy Physics, 2014
  • [40] Two-loop integrals in chiral perturbation theory
    Gasser, J
    Sainio, ME
    EUROPEAN PHYSICAL JOURNAL C, 1999, 6 (02): : 297 - 306