A computation of two-loop six-point Feynman integrals in dimensional regularization

被引:3
|
作者
Henn, Johannes [1 ]
Matijasic, Antonela [1 ]
Miczajka, Julian [1 ]
Peraro, Tiziano [2 ,3 ]
Xu, Yingxuan [4 ]
Zhang, Yang [5 ,6 ]
机构
[1] Werner Heisenberg Inst, Max Planck Inst Phys, Boltzmannstr 8, D-85748 Garching, Germany
[2] Univ Bologna, Dipartimento Fis & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[3] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy
[4] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[5] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[6] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
来源
基金
欧洲研究理事会;
关键词
Higher-Order Perturbative Calculations; Scattering Amplitudes; Differential and Algebraic Geometry; DIFFERENTIAL-EQUATIONS; PARTS;
D O I
10.1007/JHEP08(2024)027
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute three families of two-loop six-point massless Feynman integrals in dimensional regularization, namely the double-box, the pentagon-triangle, and the hegaxon-bubble family. This constitutes the first analytic computation of two-loop master integrals with eight scales. We use the method of canonical differential equations. We describe the corresponding integral basis with uniform transcendentality, the relevant function alphabet, and analytic boundary values at a particular point in the Euclidean region up to the fourth order in the regularization parameter & varepsilon;. The results are expressed as one-fold integrals over classical polylogarithms. We provide a set of supplementary files containing our results in machine-readable form, including a proof-of-concept implementation for numerical evaluations of the one-fold integrals valid within a subset of the Euclidean region.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] High-precision computation of two-loop Feynman diagrams with Wilson fermions
    Capitani, S
    Caracciolo, S
    Pelissetto, A
    Rossi, G
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 802 - 804
  • [22] Two-loop euler-heisenberg lagrangian in dimensional regularization
    D. Fliegner
    M. Reuter
    M. G. Schmidt
    C. Schubert
    Theoretical and Mathematical Physics, 1997, 113 : 1442 - 1451
  • [23] Two-loop Feynman integrals for φ4 theory with long-range correlated disorder
    Dudka, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [24] Two-loop Euler-Heisenberg Lagrangian in dimensional regularization
    Fliegner, D
    Reuter, M
    Schmidt, MG
    Schubert, C
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 113 (02) : 1442 - 1451
  • [25] Two-loop five-point amplitudes in QCD from Feynman diagrams
    Hartanto, Heribertus Bayu
    EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS, EPS-HEP2019, 2020,
  • [26] ON THE DIMENSIONAL REGULARIZATION PROCEDURE FOR MASSLESS FEYNMAN-INTEGRALS
    KALINOWSKI, MW
    SEWERYNSKI, M
    SZYMANOWSKI, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (02) : 375 - 376
  • [27] Two-loop renormalization of Feynman gauge QED
    Adkins, GS
    Fell, RN
    Sapirstein, J
    PHYSICAL REVIEW D, 2001, 63 (12):
  • [28] String derivation of two-loop Feynman diagrams
    Magnea, L
    Russo, R
    BEYOND THE STANDARD MODEL V. FIFTH CONFERENCE, 1997, (415): : 347 - 353
  • [29] Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph
    Remiddi, Ettore
    Tancredi, Lorenzo
    NUCLEAR PHYSICS B, 2014, 880 : 343 - 377
  • [30] Analytical calculation of two-loop Feynman diagrams
    Bonciani, R
    ACTA PHYSICA POLONICA B, 2004, 35 (11): : 2587 - 2600