A computation of two-loop six-point Feynman integrals in dimensional regularization

被引:3
|
作者
Henn, Johannes [1 ]
Matijasic, Antonela [1 ]
Miczajka, Julian [1 ]
Peraro, Tiziano [2 ,3 ]
Xu, Yingxuan [4 ]
Zhang, Yang [5 ,6 ]
机构
[1] Werner Heisenberg Inst, Max Planck Inst Phys, Boltzmannstr 8, D-85748 Garching, Germany
[2] Univ Bologna, Dipartimento Fis & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[3] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy
[4] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[5] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[6] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
来源
基金
欧洲研究理事会;
关键词
Higher-Order Perturbative Calculations; Scattering Amplitudes; Differential and Algebraic Geometry; DIFFERENTIAL-EQUATIONS; PARTS;
D O I
10.1007/JHEP08(2024)027
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute three families of two-loop six-point massless Feynman integrals in dimensional regularization, namely the double-box, the pentagon-triangle, and the hegaxon-bubble family. This constitutes the first analytic computation of two-loop master integrals with eight scales. We use the method of canonical differential equations. We describe the corresponding integral basis with uniform transcendentality, the relevant function alphabet, and analytic boundary values at a particular point in the Euclidean region up to the fourth order in the regularization parameter & varepsilon;. The results are expressed as one-fold integrals over classical polylogarithms. We provide a set of supplementary files containing our results in machine-readable form, including a proof-of-concept implementation for numerical evaluations of the one-fold integrals valid within a subset of the Euclidean region.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Two-loop integrals of half-BPS six-point functions on a line
    Rodrigues, Ricardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (05)
  • [2] The two-loop six-point amplitude in ABJM theory
    S. Caron-Huot
    Yu-tin Huang
    Journal of High Energy Physics, 2013
  • [3] The two-loop six-point amplitude in ABJM theory
    Caron-Huot, S.
    Huang, Yu-tin
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (03):
  • [4] Motivic Geometry of two-Loop Feynman Integrals
    Doran, Charles F.
    Harder, Andrew
    Vanhove, Pierre
    Pichon-Pharabod, Eric
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (03): : 901 - 967
  • [5] Diagrammatic Coaction of Two-Loop Feynman Integrals
    Abreu, Samuel
    Britto, Ruth
    Duhr, Claude
    Gardi, Einan
    Matthew, James
    14TH INTERNATIONAL SYMPOSIUM ON RADIATIVE CORRECTIONS, RADCOR2019, 2020,
  • [6] Global poles of the two-loop six-point N=4 SYM integrand
    Larsen, Kasper J.
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [7] Massive two-loop four-point Feynman integrals at high energies with AsyInt
    Zhang, Hantian
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (09):
  • [8] A first look at the function space for planar two-loop six-particle Feynman integrals
    Henn, Johannes
    Peraro, Tiziano
    Xu, Yingxuan
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [9] All Two-Loop Feynman Integrals for Five-Point One-Mass Scattering
    Abreu, Samuel
    Chicherin, Dmitry
    Ita, Harald
    Page, Ben
    Sotnikov, Vasily
    Tschernow, Wladimir
    Zoia, Simone
    PHYSICAL REVIEW LETTERS, 2024, 132 (14)
  • [10] The two-loop soft current in dimensional regularization
    Duhr, Claude
    Gehrmann, Thomas
    PHYSICS LETTERS B, 2013, 727 (4-5) : 452 - 455