Deep-learning based flat-fielding quantitative phase contrast microscopy

被引:3
|
作者
Wang, Wenjian [1 ,2 ,3 ,4 ]
Zhuo, Kequn [1 ,2 ,3 ,4 ]
Liu, Xin [1 ,2 ,3 ]
Feng, Wenjing [1 ,2 ,3 ,4 ]
Xiong, Zihan [1 ,2 ,3 ,4 ]
Liu, Ruihua [1 ,2 ,3 ,4 ]
Ali, Nauman [1 ,2 ,3 ,4 ]
Ma, Ying [1 ,2 ,3 ]
Zheng, Juanjuan [1 ,2 ,3 ,4 ]
An, Sha [1 ,2 ,3 ,4 ]
Gao, Peng [1 ,2 ,3 ,4 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
[2] Minist Educ, Key Lab Optoelect Percept Complex Environm, Xian, Peoples R China
[3] Univ Shaanxi Prov, Engn Res Ctr Informat Nanomat, Shanxi 030006, Peoples R China
[4] Xian Engn Res Ctr Superresolut Opt Microscopy, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
RESOLUTION;
D O I
10.1364/OE.520784
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantitative phase contrast microscopy (QPCM) can realize high -quality imaging of sub -organelles inside live cells without fluorescence labeling, yet it requires at least three phase -shifted intensity images. Herein, we combine a novel convolutional neural network with QPCM to quantitatively obtain the phase distribution of a sample by only using two phase -shifted intensity images. Furthermore, we upgraded the QPCM setup by using a phase -type spatial light modulator (SLM) to record two phase -shifted intensity images in one shot, allowing for real-time quantitative phase imaging of moving samples or dynamic processes. The proposed technique was demonstrated by imaging the fine structures and fast dynamic behaviors of sub -organelles inside live COS7 cells and 3T3 cells, including mitochondria and lipid droplets, with a lateral spatial resolution of 245 nm and an imaging speed of 250 frames per second (FPS). We imagine that the proposed technique can provide an effective way for the high spatiotemporal resolution, high contrast, and label -free dynamic imaging of living cells.
引用
收藏
页码:12462 / 12475
页数:14
相关论文
共 50 条
  • [41] Value-Based Deep-Learning Acceleration
    Moshovos, Andreas
    Albericio, Jorge
    Judd, Patrick
    Lascorz, Alberto Delmas
    Sharify, Sayeh
    Hetherington, Tayler
    Aamodt, Tor
    Jerger, Natalie Enright
    IEEE MICRO, 2018, 38 (01) : 41 - 55
  • [42] A deep-learning based automatic glaucoma identification
    Kucur, Serife Seda Seda
    Abegg, Mathias
    Wolf, Sebastian
    Sznitman, Raphael
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [43] Vibrational phase contrast CARS microscopy for quantitative analysis
    Jurna, M.
    Garbacik, E. T.
    Korterik, J. P.
    Otto, C.
    Herek, J. L.
    Offerhaus, H. L.
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES X, 2010, 7569
  • [44] Quantitative Phase Contrast Digital Holographic Microscopy in Biophotonics
    Kemper, Bjoern
    Langehanenberg, Patrik
    von Bally, Gert
    EMERGING TRENDS AND NOVEL MATERIALS IN PHOTONICS, 2010, 1288 : 5 - 11
  • [45] Interactive deep-learning based tumor segmentation
    Wei, Z.
    Ren, J.
    Eriksen, J. G.
    Korreman, S. S.
    Nijkamp, J. A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1385 - S1386
  • [46] Cytopathological image analysis using deep-learning networks in microfluidic microscopy
    Gopakumar, G.
    Babu, K. Hari
    Mishra, Deepak
    Gorthi, Sai Siva
    Subrahmanyam, Gorthi. R. K. Sai
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (01) : 111 - 121
  • [47] Cancer-Cell Deep-Learning Classification by Integrating Quantitative-Phase Spatial and Temporal Fluctuations
    Ben Baruch, Shani
    Rotman-Nativ, Noa
    Baram, Alon
    Greenspan, Hayit
    Shaked, Natan T.
    CELLS, 2021, 10 (12)
  • [48] Self-supervised deep-learning two-photon microscopy
    He, Yuezhi
    Yao, Jing
    Liu, Lina
    Gao, Yufeng
    Yu, Jia
    Ye, Shiwei
    Li, Hui
    Zheng, Wei
    PHOTONICS RESEARCH, 2023, 11 (01) : 1 - 11
  • [49] A lightweight deep-learning model for parasite egg detection in microscopy images
    Xu, Wenbin
    Zhai, Qiang
    Liu, Jizhong
    Xu, Xingyu
    Hua, Jing
    PARASITES & VECTORS, 2024, 17 (01):
  • [50] CenFind: a deep-learning pipeline for efficient centriole detection in microscopy datasets
    Burgy, Leo
    Weigert, Martin
    Hatzopoulos, Georgios
    Minder, Matthias
    Journe, Adrien
    Rahi, Sahand Jamal
    Gonczy, Pierre
    BMC BIOINFORMATICS, 2023, 24 (01)