Deep-learning based flat-fielding quantitative phase contrast microscopy

被引:3
|
作者
Wang, Wenjian [1 ,2 ,3 ,4 ]
Zhuo, Kequn [1 ,2 ,3 ,4 ]
Liu, Xin [1 ,2 ,3 ]
Feng, Wenjing [1 ,2 ,3 ,4 ]
Xiong, Zihan [1 ,2 ,3 ,4 ]
Liu, Ruihua [1 ,2 ,3 ,4 ]
Ali, Nauman [1 ,2 ,3 ,4 ]
Ma, Ying [1 ,2 ,3 ]
Zheng, Juanjuan [1 ,2 ,3 ,4 ]
An, Sha [1 ,2 ,3 ,4 ]
Gao, Peng [1 ,2 ,3 ,4 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
[2] Minist Educ, Key Lab Optoelect Percept Complex Environm, Xian, Peoples R China
[3] Univ Shaanxi Prov, Engn Res Ctr Informat Nanomat, Shanxi 030006, Peoples R China
[4] Xian Engn Res Ctr Superresolut Opt Microscopy, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
RESOLUTION;
D O I
10.1364/OE.520784
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantitative phase contrast microscopy (QPCM) can realize high -quality imaging of sub -organelles inside live cells without fluorescence labeling, yet it requires at least three phase -shifted intensity images. Herein, we combine a novel convolutional neural network with QPCM to quantitatively obtain the phase distribution of a sample by only using two phase -shifted intensity images. Furthermore, we upgraded the QPCM setup by using a phase -type spatial light modulator (SLM) to record two phase -shifted intensity images in one shot, allowing for real-time quantitative phase imaging of moving samples or dynamic processes. The proposed technique was demonstrated by imaging the fine structures and fast dynamic behaviors of sub -organelles inside live COS7 cells and 3T3 cells, including mitochondria and lipid droplets, with a lateral spatial resolution of 245 nm and an imaging speed of 250 frames per second (FPS). We imagine that the proposed technique can provide an effective way for the high spatiotemporal resolution, high contrast, and label -free dynamic imaging of living cells.
引用
收藏
页码:12462 / 12475
页数:14
相关论文
共 50 条
  • [31] DLgram cloud service for deep-learning analysis of microscopy images
    Matveev, Andrey V.
    Nartova, Anna V.
    Sankova, Natalya N.
    Okunev, Alexey G.
    MICROSCOPY RESEARCH AND TECHNIQUE, 2024, 87 (05) : 991 - 998
  • [32] Phase retrieval microscopy for quantitative phase-contrast imaging
    Zhang, Y
    Pedrini, G
    Osten, W
    Tiziani, HJ
    OPTIK, 2004, 115 (02): : 94 - 96
  • [33] Validation of deep-learning accelerated quantitative susceptibility mapping for deep brain nuclei
    Zhou, Ying
    Liu, Lingyun
    Xu, Shan
    Ye, Yongquan
    Zhang, Ruiting
    Zhang, Minming
    Sun, Jianzhong
    Huang, Peiyu
    FRONTIERS IN NEUROSCIENCE, 2025, 19
  • [34] On the Confidence of Stereo Matching in a Deep-Learning Era: A Quantitative Evaluation
    Poggi, Matteo
    Kim, Seungryong
    Tosi, Fabio
    Kim, Sunok
    Aleotti, Filippo
    Min, Dongbo
    Sohn, Kwanghoon
    Mattoccia, Stefano
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5293 - 5313
  • [35] Cell mitosis event analysis in phase contrast microscopy images using deep learning
    Mao, Yunxiang
    Han, Liang
    Yin, Zhaozheng
    MEDICAL IMAGE ANALYSIS, 2019, 57 : 32 - 43
  • [36] Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images
    ZAFRAN HUSSAIN SHAH
    MARCEL MüLLER
    TUNG-CHENG WANG
    PHILIP MAURICE SCHEIDIG
    AXEL SCHNEIDER
    MARK SCHüTTPELZ
    THOMAS HUSER
    WOLFRAM SCHENCK
    Photonics Research, 2021, (05) : 570 - 583
  • [37] Hybrid deep-learning and physics-based neural network for programmable illumination computational microscopy
    Sun, Ruiqing
    Yang, Delong
    Zhang, Shaohui
    Hao, Qun
    ADVANCED PHOTONICS NEXUS, 2024, 3 (05):
  • [38] Application of deep-learning based techniques for automatic metrology on scanning and transmission electron microscopy images
    Baderot, J.
    Grould, M.
    Misra, D.
    Clement, N.
    Hallal, A.
    Martinez, S.
    Foucher, J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2022, 40 (05):
  • [39] Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images
    Shah, Zafran Hussain
    Mueller, Marcel
    Wang, Tung-Cheng
    Scheidig, Philip Maurice
    Schneider, Axel
    Schuettpelz, Mark
    Huser, Thomas
    Schenck, Wolfram
    PHOTONICS RESEARCH, 2021, 9 (05) : B168 - B181
  • [40] Deep-Learning Based Estimation of Dielectrophoretic Force
    Ajala, Sunday
    Jalajamony, Harikrishnan Muraleedharan
    Fernandez, Renny Edwin
    MICROMACHINES, 2022, 13 (01)