Deep-learning based flat-fielding quantitative phase contrast microscopy

被引:3
|
作者
Wang, Wenjian [1 ,2 ,3 ,4 ]
Zhuo, Kequn [1 ,2 ,3 ,4 ]
Liu, Xin [1 ,2 ,3 ]
Feng, Wenjing [1 ,2 ,3 ,4 ]
Xiong, Zihan [1 ,2 ,3 ,4 ]
Liu, Ruihua [1 ,2 ,3 ,4 ]
Ali, Nauman [1 ,2 ,3 ,4 ]
Ma, Ying [1 ,2 ,3 ]
Zheng, Juanjuan [1 ,2 ,3 ,4 ]
An, Sha [1 ,2 ,3 ,4 ]
Gao, Peng [1 ,2 ,3 ,4 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
[2] Minist Educ, Key Lab Optoelect Percept Complex Environm, Xian, Peoples R China
[3] Univ Shaanxi Prov, Engn Res Ctr Informat Nanomat, Shanxi 030006, Peoples R China
[4] Xian Engn Res Ctr Superresolut Opt Microscopy, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
RESOLUTION;
D O I
10.1364/OE.520784
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantitative phase contrast microscopy (QPCM) can realize high -quality imaging of sub -organelles inside live cells without fluorescence labeling, yet it requires at least three phase -shifted intensity images. Herein, we combine a novel convolutional neural network with QPCM to quantitatively obtain the phase distribution of a sample by only using two phase -shifted intensity images. Furthermore, we upgraded the QPCM setup by using a phase -type spatial light modulator (SLM) to record two phase -shifted intensity images in one shot, allowing for real-time quantitative phase imaging of moving samples or dynamic processes. The proposed technique was demonstrated by imaging the fine structures and fast dynamic behaviors of sub -organelles inside live COS7 cells and 3T3 cells, including mitochondria and lipid droplets, with a lateral spatial resolution of 245 nm and an imaging speed of 250 frames per second (FPS). We imagine that the proposed technique can provide an effective way for the high spatiotemporal resolution, high contrast, and label -free dynamic imaging of living cells.
引用
收藏
页码:12462 / 12475
页数:14
相关论文
共 50 条
  • [1] Characterization of flat-fielding systems for quantitative microscopy
    Ibrahim, Khalid A.
    Mahecic, Dora
    Manley, Suliana
    OPTICS EXPRESS, 2020, 28 (15) : 22036 - 22047
  • [2] Label-free imaging of intracellular organelle dynamics using flat-fielding quantitative phase contrast microscopy (FF-QPCM)
    Ma, Ying
    Dai, Taiqiang
    Lei, YunZe
    Zheng, Juanjuan
    Liu, Min
    Sui, Bingdong
    Smith, Zachary J.
    Chu, Kaiqin
    Kong, Liang
    Gao, Peng
    OPTICS EXPRESS, 2022, 30 (06) : 9505 - 9520
  • [3] Better flat-fielding for ground-based UV spectrographs
    Kerber, Florian
    Hanuschik, Reinhard
    Moehler, Sabine
    Smette, Alain
    Smoker, Jonathan
    Bourget, Pierre
    Dwyer, Peter J.
    Rotschaedl, Michael
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V, 2014, 9147
  • [4] FLAT-FIELDING OF SOLAR Hα OBSERVATIONS BASED ON THE MAXIMUM CORRENTROPY CRITERION
    Xu, Gao-Gui
    Zheng, Sheng
    Lin, Gang-Hua
    Wang, Xiao-Fan
    ASTROPHYSICAL JOURNAL, 2016, 827 (02):
  • [5] Deep learning-based quantitative phase microscopy
    Wang, Wenjian
    Ali, Nauman
    Ma, Ying
    Dong, Zhao
    Zuo, Chao
    Gao, Peng
    FRONTIERS IN PHYSICS, 2023, 11
  • [6] Deep-learning for microscopy
    Daryl J. V. David
    Nature Cell Biology, 2022, 24 : 1321 - 1321
  • [7] Deep-learning for microscopy
    David, Daryl J. V.
    NATURE CELL BIOLOGY, 2022, 24 (09) : 1321 - 1321
  • [8] Untrained deep learning-based differential phase-contrast microscopy
    Seong, Baekcheon
    Kim, Ingyoung
    Moon, Taegyun
    Ranathunga, Malith
    Kim, Daesuk
    Joo, Chulmin
    OPTICS LETTERS, 2023, 48 (13) : 3607 - 3610
  • [9] Single-shot quantitative phase contrast imaging based on deep learning
    Lin, Yu-Chun
    Luo, Yuan
    Chen, Ying-Ju
    Chen, Huei-Wen
    Young, Tai-Horng
    Huang, Hsuan-Ming
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (07) : 3458 - 3468
  • [10] Quantification of Myxococcus xanthus Aggregation and Rippling Behaviors: Deep-Learning Transformation of Phase-Contrast into Fluorescence Microscopy Images
    Zhang, Jiangguo
    Comstock, Jessica A.
    Cotter, Christopher R.
    Murphy, Patrick A.
    Nie, Weili
    Welch, Roy D.
    Patel, Ankit B.
    Igoshin, Oleg A.
    MICROORGANISMS, 2021, 9 (09)