Twin support vector machines based on chaotic mapping dung beetle optimization algorithm

被引:4
|
作者
Huang, Huajuan [1 ]
Yao, Zhenhua [1 ]
Wei, Xiuxi [1 ,2 ]
Zhou, Yongquan [1 ,3 ]
机构
[1] Guangxi Minzu Univ, Coll Artificial Intelligence, Nanning 530006, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[3] Guangxi Minzu Univ, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning 530006, Peoples R China
基金
中国国家自然科学基金;
关键词
twin support vector machines; dung beetle optimization algorithm; parameter selection; chaotic mapping; classification; SVM; CLASSIFICATION;
D O I
10.1093/jcde/qwae040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Twin Support Vector Machine (TSVM) is a powerful machine learning method that is usually used to solve binary classification problems. But although the classification speed and performance of TSVM is better than that of primitive support vector machine, TSVM still faces the problem of difficult parameter selection; therefore, to overcome the problem of parameter selection of TSVM, this paper proposes a Chaotic Mapping Dung Beetle Optimization Algorithm-based Twin Support Vector Machine (CMDBO-TSVM) for automatic parameter selection. Due to the uncertainty of the random initialization population of the original Dung Beetle Optimization Algorithm, this paper additionally adds chaotic mapping initialization to improve the Dung Beetle Optimization Algorithm. Experiments on the dataset through this paper show that the classification accuracy of the CMDBO-TSVM has a better performance. Graphical Abstract
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [21] Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes
    Kose, Utku
    Guraksin, Gur Emre
    Deperlioglu, Omer
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2016, 7 (01): : 80 - 90
  • [22] A Global Optimization Algorithm Based on Support Vector Machines for Electromagnetic Inverse Problem
    An, Jinlong
    Yang, Qingxin
    Ma, Zhenping
    Hou, Likun
    Li, Jianwei
    Chen, Tanggong
    2008 WORLD AUTOMATION CONGRESS PROCEEDINGS, VOLS 1-3, 2008, : 1102 - 1106
  • [23] An overview on twin support vector machines
    Shifei Ding
    Junzhao Yu
    Bingjuan Qi
    Huajuan Huang
    Artificial Intelligence Review, 2014, 42 : 245 - 252
  • [24] Review on: Twin Support Vector Machines
    Tian Y.
    Qi Z.
    Tian, Yingjie (tyj@ucas.ac.cn), 1600, Springer Science and Business Media Deutschland GmbH (01): : 253 - 277
  • [25] Twin support vector machines: A survey
    Huang, Huajuan
    Wei, Xiuxi
    Zhou, Yongquan
    NEUROCOMPUTING, 2018, 300 : 34 - 43
  • [26] Generalized Twin Support Vector Machines
    H. Moosaei
    S. Ketabchi
    M. Razzaghi
    M. Tanveer
    Neural Processing Letters, 2021, 53 : 1545 - 1564
  • [27] Improvements on Twin Support Vector Machines
    Shao, Yuan-Hai
    Zhang, Chun-Hua
    Wang, Xiao-Bo
    Deng, Nai-Yang
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 962 - 968
  • [28] Multitask Twin Support Vector Machines
    Xie, Xijiong
    Sun, Shiliang
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 341 - 348
  • [29] Generalized Twin Support Vector Machines
    Moosaei, H.
    Ketabchi, S.
    Razzaghi, M.
    Tanveer, M.
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1545 - 1564
  • [30] An overview on twin support vector machines
    Ding, Shifei
    Yu, Junzhao
    Qi, Bingjuan
    Huang, Huajuan
    ARTIFICIAL INTELLIGENCE REVIEW, 2014, 42 (02) : 245 - 252