Improvements on Twin Support Vector Machines

被引:453
|
作者
Shao, Yuan-Hai [1 ]
Zhang, Chun-Hua [2 ]
Wang, Xiao-Bo [3 ]
Deng, Nai-Yang [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] Renmin Univ China, Dept Math, Informat Sch, Beijing 100872, Peoples R China
[3] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2011年 / 22卷 / 06期
基金
中国国家自然科学基金;
关键词
Machine learning; maximum margin; structural risk minimization principle; support vector machines; SELECTION;
D O I
10.1109/TNN.2011.2130540
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For classification problems, the generalized eigen-value proximal support vector machine (GEPSVM) and twin support vector machine (TWSVM) are regarded as milestones in the development of the powerful SVMs, as they use the nonparallel hyperplane classifiers. In this brief, we propose an improved version, named twin bounded support vector machines (TBSVM), based on TWSVM. The significant advantage of our TBSVM over TWSVM is that the structural risk minimization principle is implemented by introducing the regularization term. This embodies the marrow of statistical learning theory, so this modification can improve the performance of classification. In addition, the successive overrelaxation technique is used to solve the optimization problems to speed up the training procedure. Experimental results show the effectiveness of our method in both computation time and classification accuracy, and therefore confirm the above conclusion further.
引用
收藏
页码:962 / 968
页数:8
相关论文
共 50 条
  • [1] Improvements on ν-Twin Support Vector Machine
    Khemchandani, Reshma
    Saigal, Pooja
    Chandra, Suresh
    [J]. NEURAL NETWORKS, 2016, 79 : 97 - 107
  • [2] Review on: Twin Support Vector Machines
    Tian Y.
    Qi Z.
    [J]. Tian, Yingjie (tyj@ucas.ac.cn), 1600, Springer Science and Business Media Deutschland GmbH (01): : 253 - 277
  • [3] An overview on twin support vector machines
    Shifei Ding
    Junzhao Yu
    Bingjuan Qi
    Huajuan Huang
    [J]. Artificial Intelligence Review, 2014, 42 : 245 - 252
  • [4] Twin support vector machines: A survey
    Huang, Huajuan
    Wei, Xiuxi
    Zhou, Yongquan
    [J]. NEUROCOMPUTING, 2018, 300 : 34 - 43
  • [5] Multitask Twin Support Vector Machines
    Xie, Xijiong
    Sun, Shiliang
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 341 - 348
  • [6] Generalized Twin Support Vector Machines
    H. Moosaei
    S. Ketabchi
    M. Razzaghi
    M. Tanveer
    [J]. Neural Processing Letters, 2021, 53 : 1545 - 1564
  • [7] Generalized Twin Support Vector Machines
    Moosaei, H.
    Ketabchi, S.
    Razzaghi, M.
    Tanveer, M.
    [J]. NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1545 - 1564
  • [8] An overview on twin support vector machines
    Ding, Shifei
    Yu, Junzhao
    Qi, Bingjuan
    Huang, Huajuan
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2014, 42 (02) : 245 - 252
  • [9] Quantum speedup of twin support vector machines
    Zekun YE
    Lvzhou LI
    Haozhen SITU
    Yuyi WANG
    [J]. Science China(Information Sciences), 2020, 63 (08) : 272 - 274
  • [10] Quantum speedup of twin support vector machines
    Ye, Zekun
    Li, Lvzhou
    Situ, Haozhen
    Wang, Yuyi
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)