scGREAT: Transformer-based deep-language model for gene regulatory network inference from single-cell transcriptomics

被引:4
|
作者
Wang, Yuchen [1 ]
Chen, Xingjian [1 ,2 ]
Zheng, Zetian [1 ]
Huang, Lei [1 ]
Xie, Weidun [1 ]
Wang, Fuzhou [1 ]
Zhang, Zhaolei [4 ,5 ]
Wong, Ka -Chun [1 ,3 ,6 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[2] Massachusetts Gen Hosp, Cutaneous Biol Res Ctr, Harvard Med Sch, Boston, MA USA
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
[4] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[5] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada
[6] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
基金
中国国家自然科学基金;
关键词
external validation; EXPRESSION; STAT3;
D O I
10.1016/j.isci.2024.109352
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene regulatory networks (GRNs) involve complex and multi -layer regulatory interactions between regulators and their target genes. Precise knowledge of GRNs is important in understanding cellular processes and molecular functions. Recent breakthroughs in single -cell sequencing technology made it possible to infer GRNs at single -cell level. Existing methods, however, are limited by expensive computations, and sometimes simplistic assumptions. To overcome these obstacles, we propose scGREAT, a framework to infer GRN using gene embeddings and transformer from single -cell transcriptomics. scGREAT starts by constructing gene expression and gene biotext dictionaries from scRNA-seq data and gene text information. The representation of TF gene pairs is learned through optimizing embedding space by transformer -based engine. Results illustrated scGREAT outperformed other contemporary methods on benchmarks. Besides, gene representations from scGREAT provide valuable gene regulation insights, and external validation on spatial transcriptomics illuminated the mechanism behind scGREAT annotation. Moreover, scGREAT identified several TF target regulations corroborated in studies.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Computational methods for trajectory inference from single-cell transcriptomics
    Cannoodt, Robrecht
    Saelens, Wouter
    Saeys, Yvan
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (11) : 2496 - 2506
  • [32] Dissecting and improving gene regulatory network inference using single-cell transcriptome data
    Xue, Lingfeng
    Wu, Yan
    Lin, Yihan
    GENOME RESEARCH, 2023, 33 (09) : 1609 - 1621
  • [33] Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
    Wang, Jiacheng
    Chen, Yaojia
    Zou, Quan
    PLOS GENETICS, 2023, 19 (09):
  • [34] SCING: Inference of robust, interpretable gene regulatory networks from single cell and spatial transcriptomics
    Littman, Russell
    Cheng, Michael
    Wang, Ning
    Peng, Chao
    Yang, Xia
    ISCIENCE, 2023, 26 (07)
  • [35] A Transformer-based Function Symbol Name Inference Model from an Assembly Language for Binary Reversing
    Kim, HyunJin
    Bak, JinYeong
    Cho, Kyunghyun
    Koo, Hyungjoon
    PROCEEDINGS OF THE 2023 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, ASIA CCS 2023, 2023, : 951 - 965
  • [36] Single-cell biological network inference using a heterogeneous graph transformer
    Anjun Ma
    Xiaoying Wang
    Jingxian Li
    Cankun Wang
    Tong Xiao
    Yuntao Liu
    Hao Cheng
    Juexin Wang
    Yang Li
    Yuzhou Chang
    Jinpu Li
    Duolin Wang
    Yuexu Jiang
    Li Su
    Gang Xin
    Shaopeng Gu
    Zihai Li
    Bingqiang Liu
    Dong Xu
    Qin Ma
    Nature Communications, 14
  • [37] Single-cell biological network inference using a heterogeneous graph transformer
    Ma, Anjun
    Wang, Xiaoying
    Li, Jingxian
    Wang, Cankun
    Xiao, Tong
    Liu, Yuntao
    Cheng, Hao
    Wang, Juexin
    Li, Yang
    Chang, Yuzhou
    Li, Jinpu
    Wang, Duolin
    Jiang, Yuexu
    Su, Li
    Xin, Gang
    Gu, Shaopeng
    Li, Zihai
    Liu, Bingqiang
    Xu, Dong
    Ma, Qin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [38] A transformer-based deep neural network model for SSVEP classification
    Chen, Jianbo
    Zhang, Yangsong
    Pan, Yudong
    Xu, Peng
    Guan, Cuntai
    NEURAL NETWORKS, 2023, 164 : 521 - 534
  • [39] GENE REGULATORY EFFECTS INFERENCE FOR CELL FATE DETERMINATION BASED ON SINGLE-CELL RESOLUTION DATA
    Huang, Xiao-Tai
    Chan, Leanne L. H.
    Zhao, Zhong-Ying
    Yan, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL. 1, 2015, : 283 - 288
  • [40] High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0
    Gibbs, Claudia Skok
    Jackson, Christopher A.
    Saldi, Giuseppe-Antonio
    Tjarnberg, Andreas
    Shah, Aashna
    Watters, Aaron
    De Veaux, Nicholas
    Tchourine, Konstantine
    Yi, Ren
    Hamamsy, Tymor
    Castro, Dayanne M.
    Carriero, Nicholas
    Gorissen, Bram L.
    Gresham, David
    Miraldi, Emily R.
    Bonneau, Richard
    BIOINFORMATICS, 2022, 38 (09) : 2519 - 2528