scGREAT: Transformer-based deep-language model for gene regulatory network inference from single-cell transcriptomics

被引:4
|
作者
Wang, Yuchen [1 ]
Chen, Xingjian [1 ,2 ]
Zheng, Zetian [1 ]
Huang, Lei [1 ]
Xie, Weidun [1 ]
Wang, Fuzhou [1 ]
Zhang, Zhaolei [4 ,5 ]
Wong, Ka -Chun [1 ,3 ,6 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[2] Massachusetts Gen Hosp, Cutaneous Biol Res Ctr, Harvard Med Sch, Boston, MA USA
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
[4] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[5] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada
[6] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
基金
中国国家自然科学基金;
关键词
external validation; EXPRESSION; STAT3;
D O I
10.1016/j.isci.2024.109352
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene regulatory networks (GRNs) involve complex and multi -layer regulatory interactions between regulators and their target genes. Precise knowledge of GRNs is important in understanding cellular processes and molecular functions. Recent breakthroughs in single -cell sequencing technology made it possible to infer GRNs at single -cell level. Existing methods, however, are limited by expensive computations, and sometimes simplistic assumptions. To overcome these obstacles, we propose scGREAT, a framework to infer GRN using gene embeddings and transformer from single -cell transcriptomics. scGREAT starts by constructing gene expression and gene biotext dictionaries from scRNA-seq data and gene text information. The representation of TF gene pairs is learned through optimizing embedding space by transformer -based engine. Results illustrated scGREAT outperformed other contemporary methods on benchmarks. Besides, gene representations from scGREAT provide valuable gene regulation insights, and external validation on spatial transcriptomics illuminated the mechanism behind scGREAT annotation. Moreover, scGREAT identified several TF target regulations corroborated in studies.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Gene regulatory network inference in the era of single-cell multi-omics
    Badia-i-Mompel, Pau
    Wessels, Lorna
    Mueller-Dott, Sophia
    Trimbour, Remi
    Flores, Ricardo Ramirez O.
    Argelaguet, Ricard
    Saez-Rodriguez, Julio
    NATURE REVIEWS GENETICS, 2023, 24 (11) : 739 - 754
  • [22] Gene regulatory network inference in the era of single-cell multi-omics
    Pau Badia-i-Mompel
    Lorna Wessels
    Sophia Müller-Dott
    Rémi Trimbour
    Ricardo O. Ramirez Flores
    Ricard Argelaguet
    Julio Saez-Rodriguez
    Nature Reviews Genetics, 2023, 24 : 739 - 754
  • [23] SCENIC: single-cell regulatory network inference and clustering
    Sara Aibar
    Carmen Bravo González-Blas
    Thomas Moerman
    Vân Anh Huynh-Thu
    Hana Imrichova
    Gert Hulselmans
    Florian Rambow
    Jean-Christophe Marine
    Pierre Geurts
    Jan Aerts
    Joost van den Oord
    Zeynep Kalender Atak
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2017, 14 : 1083 - 1086
  • [24] SCENIC: single-cell regulatory network inference and clustering
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Moerman, Thomas
    Van Anh Huynh-Thu
    Imrichova, Hana
    Hulselmans, Gert
    Rambow, Florian
    Marine, Jean-Christophe
    Geurts, Pierre
    Aerts, Jan
    van den Oord, Joost
    Atak, Zeynep Kalender
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2017, 14 (11) : 1083 - +
  • [25] A Deep Learning-Based Model for Gene Regulatory Network Inference
    Ma, Jialu
    Epperson, Nathan
    Talburt, John
    Yang, Mary Qu
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 546 - 550
  • [26] Cell lineage and communication network inference via optimization for single-cell transcriptomics
    Wang, Shuxiong
    Karikomi, Matthew
    MacLean, Adam L.
    Nie, Qing
    NUCLEIC ACIDS RESEARCH, 2019, 47 (11)
  • [27] scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference
    Li, Zhijian
    Nagai, James S.
    Kuppe, Christoph
    Kramann, Rafael
    Costa, Ivan G.
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [28] MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning
    Zhang, Yongqing
    Wang, Maocheng
    Wang, Zixuan
    Liu, Yuhang
    Xiong, Shuwen
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [29] SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics
    Cabello-Aguilar, Simon
    Alame, Melissa
    Kon-Sun-Tack, Fabien
    Fau, Caroline
    Lacroix, Matthieu
    Colinge, Jacques
    NUCLEIC ACIDS RESEARCH, 2020, 48 (10)
  • [30] scSGL: kernelized signed graph learning for single-cell gene regulatory network inference
    Karaaslanli, Abdullah
    Saha, Satabdi
    Aviyente, Selin
    Maiti, Tapabrata
    BIOINFORMATICS, 2022, 38 (11) : 3011 - 3019