scGREAT: Transformer-based deep-language model for gene regulatory network inference from single-cell transcriptomics

被引:4
|
作者
Wang, Yuchen [1 ]
Chen, Xingjian [1 ,2 ]
Zheng, Zetian [1 ]
Huang, Lei [1 ]
Xie, Weidun [1 ]
Wang, Fuzhou [1 ]
Zhang, Zhaolei [4 ,5 ]
Wong, Ka -Chun [1 ,3 ,6 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[2] Massachusetts Gen Hosp, Cutaneous Biol Res Ctr, Harvard Med Sch, Boston, MA USA
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
[4] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[5] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada
[6] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
基金
中国国家自然科学基金;
关键词
external validation; EXPRESSION; STAT3;
D O I
10.1016/j.isci.2024.109352
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene regulatory networks (GRNs) involve complex and multi -layer regulatory interactions between regulators and their target genes. Precise knowledge of GRNs is important in understanding cellular processes and molecular functions. Recent breakthroughs in single -cell sequencing technology made it possible to infer GRNs at single -cell level. Existing methods, however, are limited by expensive computations, and sometimes simplistic assumptions. To overcome these obstacles, we propose scGREAT, a framework to infer GRN using gene embeddings and transformer from single -cell transcriptomics. scGREAT starts by constructing gene expression and gene biotext dictionaries from scRNA-seq data and gene text information. The representation of TF gene pairs is learned through optimizing embedding space by transformer -based engine. Results illustrated scGREAT outperformed other contemporary methods on benchmarks. Besides, gene representations from scGREAT provide valuable gene regulation insights, and external validation on spatial transcriptomics illuminated the mechanism behind scGREAT annotation. Moreover, scGREAT identified several TF target regulations corroborated in studies.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Transformer-Based Single-Cell Language Model: A Survey
    Lan, Wei
    He, Guohang
    Liu, Mingyang
    Chen, Qingfeng
    Cao, Junyue
    Peng, Wei
    BIG DATA MINING AND ANALYTICS, 2024, 7 (04): : 1169 - 1186
  • [2] A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data
    Loers, Jens Uwe
    Vermeirssen, Vanessa
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [3] Gene regulatory network inference in single-cell biology
    Akers, Kyle
    Murali, T. M.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 87 - 97
  • [4] Single-cell transcriptomics unveils gene regulatory network plasticity
    Iacono, Giovanni
    Massoni-Badosa, Ramon
    Heyn, Holger
    GENOME BIOLOGY, 2019, 20 (1)
  • [5] Single-cell transcriptomics unveils gene regulatory network plasticity
    Giovanni Iacono
    Ramon Massoni-Badosa
    Holger Heyn
    Genome Biology, 20
  • [6] A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data
    Zhao, Mengyuan
    He, Wenying
    Tang, Jijun
    Zou, Quan
    Guo, Fei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [7] STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data
    Xu, Jing
    Zhang, Aidi
    Liu, Fang
    Zhang, Xiujun
    BIOINFORMATICS, 2023, 39 (04)
  • [8] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : I394 - I403
  • [9] scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
    Burdziak, Cassandra
    Zhao, Chujun Julia
    Haviv, Doron
    Alonso-Curbelo, Direna
    Lowe, Scott W.
    Pe'er, Dana
    BIOINFORMATICS, 2023, 39 : i394 - i403
  • [10] LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data
    Li, Lingyu
    Sun, Liangjie
    Chen, Guangyi
    Wong, Chi-Wing
    Ching, Wai-Ki
    Liu, Zhi-Ping
    BIOINFORMATICS, 2023, 39 (05)