Long-range models in 1D revisited

被引:1
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Garban, Christophe [3 ,4 ]
Tassion, Vincent [5 ]
机构
[1] Univ Geneva, 2-4 Rue Lievre, CH-1204 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[4] Inst Univ France IUF, Paris, France
[5] Swiss Fed Inst Technol, Dept Math, Grp 3 HG G 66-5 Ramistr 101, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Percolation; Long-range; Renormalization; Critical; One-dimension; PERCOLATION; DISCONTINUITY; MAGNETIZATION; TRANSITION; PHASE;
D O I
10.1214/22-AIHP1355
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this short note, we revisit a number of classical results on long-range 1D percolation, Ising model and Potts models (Comm. Math. Phys. 84 (1982) 87-101; Comm. Math. Phys. 104 (1986) 547-571; J. Stat. Phys. 50 (1988) 1-40; Comm. Math. Phys. 118 (1988) 303-336). More precisely, we show that for Bernoulli percolation, FK percolation and Potts models, there is symmetry breaking for the 1/r2-interaction at large 0, and that the phase transition is necessarily discontinuous. We also show, following the notation of (J. Stat. Phys. 50 (1988) 1-40) that 0*(q) = 1 for all q >= 1.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 50 条
  • [31] Clustering Theorem in 1D Long-Range Interacting Systems at Arbitrary TemperaturesClustering Theorem in 1D Long-RangeY. Kimura, T. Kuwahara
    Yusuke Kimura
    Tomotaka Kuwahara
    Communications in Mathematical Physics, 2025, 406 (3)
  • [32] Non-additive properties of finite 1D Ising chains with long-range interactions
    Apostolov, S. S.
    Mayzelis, Z. A.
    Usatenko, O. V.
    Yampol'skii, V. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)
  • [33] Persistent currents with long-range hopping in 1D single-isolated-diffusive rings
    Maiti, SK
    Chowdhury, J
    Karmakar, SN
    SYNTHETIC METALS, 2005, 155 (02) : 430 - 433
  • [34] Solution strategies for 1D elastic continuum with long-range interactions: Smooth and fractional decay
    Failla, G.
    Santini, A.
    Zingales, M.
    MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (01) : 13 - 21
  • [35] ELECTROMAGNETIC CONTROL OF DYNAMICAL LOCALIZATION CONDITIONS IN 1D LATTICES WITH LONG-RANGE INTERSITE INTERACTIONS
    Jivulescu, Maria Anastasia
    Migliore, Rosanna
    Messina, Antonino
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 : 149 - 154
  • [36] Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential
    I. Guillamón
    R. Córdoba
    J. Sesé
    J. M. De Teresa
    M. R. Ibarra
    S. Vieira
    H. Suderow
    Nature Physics, 2014, 10 : 851 - 856
  • [37] Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential
    Guillamon, I.
    Cordoba, R.
    Sese, J.
    De Teresa, J. M.
    Ibarra, M. R.
    Vieira, S.
    Suderow, H.
    NATURE PHYSICS, 2014, 10 (11) : 851 - 856
  • [38] Multifractality of one electron eigen states in 1D disordered long range models
    Lima, RPA
    Lyra, ML
    Cressoni, JC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 295 (1-2) : 154 - 157
  • [39] Diffusive, super-diffusive and ballistic transport in the long-range correlated 1D Anderson model
    Santos, B.
    Viana, L. P.
    Lyra, M. L.
    de Moura, F. A. B. F.
    SOLID STATE COMMUNICATIONS, 2006, 138 (12) : 585 - 589
  • [40] BETHE-ANSATZ SOLUTIONS OF 1D CORRELATED ELECTRON-SYSTEMS WITH LONG-RANGE EXCHANGE
    KAWAKAMI, N
    PHYSICA B-CONDENSED MATTER, 1993, 186-88 : 828 - 830