Long-range models in 1D revisited

被引:1
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Garban, Christophe [3 ,4 ]
Tassion, Vincent [5 ]
机构
[1] Univ Geneva, 2-4 Rue Lievre, CH-1204 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[4] Inst Univ France IUF, Paris, France
[5] Swiss Fed Inst Technol, Dept Math, Grp 3 HG G 66-5 Ramistr 101, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Percolation; Long-range; Renormalization; Critical; One-dimension; PERCOLATION; DISCONTINUITY; MAGNETIZATION; TRANSITION; PHASE;
D O I
10.1214/22-AIHP1355
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this short note, we revisit a number of classical results on long-range 1D percolation, Ising model and Potts models (Comm. Math. Phys. 84 (1982) 87-101; Comm. Math. Phys. 104 (1986) 547-571; J. Stat. Phys. 50 (1988) 1-40; Comm. Math. Phys. 118 (1988) 303-336). More precisely, we show that for Bernoulli percolation, FK percolation and Potts models, there is symmetry breaking for the 1/r2-interaction at large 0, and that the phase transition is necessarily discontinuous. We also show, following the notation of (J. Stat. Phys. 50 (1988) 1-40) that 0*(q) = 1 for all q >= 1.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 50 条