Long-range models in 1D revisited

被引:1
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Garban, Christophe [3 ,4 ]
Tassion, Vincent [5 ]
机构
[1] Univ Geneva, 2-4 Rue Lievre, CH-1204 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, F-69622 Villeurbanne, France
[4] Inst Univ France IUF, Paris, France
[5] Swiss Fed Inst Technol, Dept Math, Grp 3 HG G 66-5 Ramistr 101, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Percolation; Long-range; Renormalization; Critical; One-dimension; PERCOLATION; DISCONTINUITY; MAGNETIZATION; TRANSITION; PHASE;
D O I
10.1214/22-AIHP1355
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this short note, we revisit a number of classical results on long-range 1D percolation, Ising model and Potts models (Comm. Math. Phys. 84 (1982) 87-101; Comm. Math. Phys. 104 (1986) 547-571; J. Stat. Phys. 50 (1988) 1-40; Comm. Math. Phys. 118 (1988) 303-336). More precisely, we show that for Bernoulli percolation, FK percolation and Potts models, there is symmetry breaking for the 1/r2-interaction at large 0, and that the phase transition is necessarily discontinuous. We also show, following the notation of (J. Stat. Phys. 50 (1988) 1-40) that 0*(q) = 1 for all q >= 1.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 50 条
  • [1] Entanglement gap in 1D long-range quantum spherical models
    Wald, Sascha
    Arias, Raul
    Alba, Vincenzo
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (24)
  • [2] Heat conduction and long-range spatial correlation in 1D models
    Xin, Z
    Iwamoto, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (46): : 11123 - 11133
  • [3] Long-range interactions in 1D heterogeneous solids with uncertainty
    Muscolino, G.
    Sofi, A.
    Zingales, M.
    [J]. IUTAM SYMPOSIUM ON MULTISCALE PROBLEMS IN STOCHASTIC MECHANICS, 2013, 6 : 69 - 78
  • [4] Universality in the time correlations of the long-range 1d Ising model
    Corberi, Federico
    Lippiello, Eugenio
    Politi, Paolo
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [5] Delocalization in the 1D Anderson model with long-range correlated disorder
    de Moura, FABF
    Lyra, ML
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (17) : 3735 - 3738
  • [6] Lyapunov Exponents in 1D Anderson Localization with Long-range Correlations
    Iomin, Alexander
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2010, 3 (03): : 297 - 302
  • [7] Loss of Stability in a 1D Spin Model with a Long-Range Random Hamiltonian
    Littin, Jorge
    Maldonado, Cesar
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 191 (01)
  • [8] Long-range memory elementary 1D cellular automata: Dynamics and nonextensivity
    Rohlf, Thimo
    Tsallis, Constantino
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) : 465 - 470
  • [9] Comment on "Delocalization in the 1D Anderson model with long-range correlated disorder"
    Kantelhardt, JW
    Russ, S
    Bunde, A
    Havlin, S
    Webman, I
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (01) : 198 - 198
  • [10] Short-time dynamics in the 1D long-range Potts model
    K. Uzelac
    Z. Glumac
    O. S. Barišić
    [J]. The European Physical Journal B, 2008, 63 : 101 - 108