Influence maximization under equilibrious groups in social networks

被引:0
|
作者
Li, Runzhi [1 ]
Zhu, Jianming [1 ]
Wang, Guoqing [2 ]
机构
[1] Univ Chinese Acad Sci, Sch Emergency Management Sci & Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 15期
基金
中国国家自然科学基金;
关键词
Equilibrious group; Entropy; Influence maximization; Social network; UNCERTAINTY; BARRIERS;
D O I
10.1007/s11227-024-06300-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In a market, there are many groups caused by geographical location or other reasons, and consumers in groups have their own brand preferences for a type of products. The diversity of consumers' brand preferences will avoid the phenomenon of brand simplification and monopoly caused by consistent brand reference of consumers, and to some extent, promote the prosperity and development of various brands in each group. For brand diversification in a market, we hope the brand preferences of consumers in each groups are as equilibrious as possible, so Influence Maximization under Equilibrious Groups (IMEG) is proposed to select k nodes to maximize the number of equilibrious groups after information diffusion. This paper proves that the IMEG is NP-hard, and computing the objective function is #P-hard. It also proves that the objective function is neither submodular nor supermodular under Independent Cascade (IC) model and Linear Threshold (LT) model. Then, the Equilibrious Groups Maximization Solution (EGMS) algorithm is presented to solve our problem. And by comparing with baseline algorithms using different datasets (dolphins, wildbird, weaver and hamsterster), it can be found that the EGMS has obvious advantages in time complexity and spatial complexity. In particular, the running time of EGMS is about 3.7x10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.7\times 10<^>{-2}$$\end{document}, 2.4x10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.4\times 10<^>{-2}$$\end{document}, 1.1x10-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\times 10<^>{-1}$$\end{document} and 1.8x10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.8\times 10<^>{-3}$$\end{document} times that of the fastest baseline algorithm in dolphins, wildbird, weaver and hamsterster respectively. And the experiments in small-world, scale-free, random and regular network verify the robustness of EGMS with the varying parameters, such as the number of nodes, the probability of adding edges and the number of adjacencies.
引用
收藏
页码:22190 / 22212
页数:23
相关论文
共 50 条
  • [31] Relative influence maximization in competitive social networks
    Dingda Yang
    Xiangwen Liao
    Huawei Shen
    Xueqi Cheng
    Guolong Chen
    [J]. Science China Information Sciences, 2017, 60
  • [32] Estimate on Expectation for Influence Maximization in Social Networks
    Zhang, Yao
    Gu, Qing
    Zheng, Jun
    Chen, Daoxu
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 99 - 106
  • [33] Influence Maximization with Trust Relationship in Social Networks
    Wang, Nan
    Li, Jinbao
    Da, Jiansong
    Liu, Yong
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 61 - 67
  • [34] Influence Maximization in Social Networks with Genetic Algorithms
    Bucur, Doina
    Iacca, Giovanni
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2016, PT I, 2016, 9597 : 379 - 392
  • [35] Influence maximization in social networks based on TOPSIS
    Zareie, Ahmad
    Sheikhahmadi, Amir
    Khamforoosh, Keyhan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 108 : 96 - 107
  • [36] Influence maximization of informed agents in social networks
    AskariSichani, Omid
    Jalili, Mahdi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 229 - 239
  • [37] Influence Maximization with Priority in Online Social Networks
    Pham, Canh V.
    Ha, Dung K. T.
    Vu, Quang C.
    Su, Anh N.
    Hoang, Huan X.
    [J]. ALGORITHMS, 2020, 13 (08)
  • [38] Collective Influence Maximization in Mobile Social Networks
    Wu, Xudong
    Fu, Luoyi
    Wang, Shuaiqi
    Jiang, Bo
    Wang, Xinbing
    Chen, Guihai
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (02) : 797 - 812
  • [39] Efficient algorithms for influence maximization in social networks
    Chen, Yi-Cheng
    Peng, Wen-Chih
    Lee, Suh-Yin
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 33 (03) : 577 - 601
  • [40] Influence Maximization Problem in Social Networks: An Overview
    Jaouadi, Myriam
    Ben Romdhane, Lotfi
    [J]. 2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,