Influence Maximization Problem in Social Networks: An Overview

被引:8
|
作者
Jaouadi, Myriam [1 ]
Ben Romdhane, Lotfi [1 ]
机构
[1] Univ Sousse, ISITCom, MARS Res Lab LR17ES05, Sousse, Tunisia
关键词
COMPLEX NETWORKS; ALGORITHM; DIFFUSION; DIVERSITY; RANKING;
D O I
10.1109/aiccsa47632.2019.9035366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Social networks have attracted a great deal of attention and have in fact important information vectors that have changed the way we produce, consume and diffuse information. Social networks' analysis has been of great interest and has encompassed different research areas including community detection, the discovery of web services from social networks, information diffusion, detection of infuential nodes. The process of detecting influential nodes in social networks is often khown as Influence Maximization (IM) problem, it deals with finding a small subset of nodes that spread maximum influence in the network. It has been proved that it has many applications such as the propagation of opinions, the study of the acceptance of political blogs or the study of the degree of adhesion of an actor to a product in marketing (web marketing). A such maximization requieres the presence of a diffusion model that controls information propagation within active individuals. This paper aims to provide a survey on the influence maximization problem and focuses on two aspects, influence diffusion models and proposed approaches for influential nodes detection. We start by describing formally the IM problem, then we will provide the state-of-the-art of both diffusion models and influence maximization algorithms.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Supplementary Influence Maximization Problem in Social Networks
    Zhang, Yapu
    Guo, Jianxiong
    Yang, Wenguo
    Wu, Weili
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 986 - 996
  • [2] Group Influence Maximization Problem in Social Networks
    Zhu, Jianming
    Ghosh, Smita
    Wu, Weili
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2019, 6 (06): : 1156 - 1164
  • [3] Influence Maximization Problem for Unknown Social Networks
    Mihara, Shodai
    Tsugawa, Sho
    Ohsaki, Hiroyuki
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), 2015, : 1539 - 1546
  • [4] On the optimal solution of budgeted influence maximization problem in social networks
    Evren Güney
    Operational Research, 2019, 19 : 817 - 831
  • [5] On the optimal solution of budgeted influence maximization problem in social networks
    Guney, Evren
    OPERATIONAL RESEARCH, 2019, 19 (03) : 817 - 831
  • [6] Rapid Influence Maximization on Social Networks: The Positive Influence Dominating Set Problem
    Raghavan, S.
    Zhang, Rui
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1345 - 1365
  • [7] A hybrid dynamic memetic algorithm for the influence maximization problem in social networks
    Tang, Jianxin
    Li, Yihui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024,
  • [8] An Effective Simulated Annealing for Influence Maximization Problem of Online Social Networks
    Liu, Shi-Jui
    Chen, Chi-Yuan
    Tsai, Chun-Wei
    8TH INTERNATIONAL CONFERENCE ON EMERGING UBIQUITOUS SYSTEMS AND PERVASIVE NETWORKS (EUSPN 2017) / 7TH INTERNATIONAL CONFERENCE ON CURRENT AND FUTURE TRENDS OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN HEALTHCARE (ICTH-2017) / AFFILIATED WORKSHOPS, 2017, 113 : 478 - 483
  • [9] Learning Automata based Approach for Influence Maximization Problem on Social Networks
    Ge, Hao
    Huang, Jinchao
    Di, Chong
    Li, Jianhua
    Li, Shenghong
    2017 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC), 2017, : 108 - 117
  • [10] Influence Maximization for Effective Advertisement in Social Networks: Problem, Solution, and Evaluation
    Hong, Suk-Jin
    Ko, Yun-Yong
    Joe, Moonjeung
    Kim, Sang-Wook
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 1314 - 1321