BPMTrack: Multi-Object Tracking With Detection Box Application Pattern Mining

被引:7
|
作者
Gao, Yan [1 ]
Xu, Haojun [1 ]
Li, Jie [1 ]
Gao, Xinbo [1 ,2 ]
机构
[1] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Kalman filters; Detectors; Location awareness; Trajectory; Task analysis; Target tracking; Prediction algorithms; Multi-object tracking; quality prediction; matching strategy; improved Kalman; box application pattern mining; SET;
D O I
10.1109/TIP.2024.3364828
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key to multi-object tracking is its stability and the retention of identity information. A common problem with most detection-based approaches is trusting and using all the detector outputs for the association. However, some settings of detectors can affect stable long-range tracking. Based on the principle of reducing the association noise in the detection processing step, we propose a new framework, the Box application Pattern Mining Tracker (BPMTrack), to address this issue. Specifically, we worked on three main aspects: output threshold, association strategy, and motion model. Due to the problem of inconsistency between classification scores and localization accuracy, we propose the Box Quality Estimation Network (BQENet) to predict the localization quality scores of all detections in the current frame, reserving high-quality boxes for the tracker. In addition, based on observations of intensive scenarios, we propose a simple and effective data association method, the Non-Maximum Suppression Integration (NMSI) matching strategy. It recovers the Non-Maximum Suppression (NMS) detection, inputs them into BQENet, and then performs hierarchical matching with reasonable control of box priority to alleviate the problem of absent objects caused by occlusion. Finally, we propose an improved Measurement Correct and Noise Scale (MCNS) Kalman algorithm to improve the prediction accuracy of object positions and, thus, the association quality. We performed an extensive ablation evaluation of the proposed framework to prove its effectiveness. Moreover, the three tracking benchmarks show our method's accuracy and long-distance performance.
引用
收藏
页码:1508 / 1521
页数:14
相关论文
共 50 条
  • [41] Interacting Tracklets for Multi-Object Tracking
    Lan, Long
    Wang, Xinchao
    Zhang, Shiliang
    Tao, Dacheng
    Gao, Wen
    Huang, Thomas S.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4585 - 4597
  • [42] MOTS: Multi-Object Tracking and Segmentation
    Voigtlaender, Paul
    Krause, Michael
    Osep, Aljosa
    Luiten, Jonathon
    Sekar, Berin Balachandar Gnana
    Geiger, Andreas
    Leibe, Bastian
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7934 - 7943
  • [43] Engineering statistics for multi-object tracking
    Mahler, R
    2001 IEEE WORKSHOP ON MULTI-OBJECT TRACKING, PROCEEDINGS, 2001, : 53 - 60
  • [44] Multi-object tracking for horse racing
    Ng, Wing W. Y.
    Liu, Xuyu
    Yan, Xuli
    Tian, Xing
    Zhong, Cankun
    Kwong, Sam
    INFORMATION SCIENCES, 2023, 638
  • [45] Relational Prior for Multi-Object Tracking
    Moskalev, Artem
    Sosnovik, Ivan
    Smeulders, Arnold
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1081 - 1085
  • [46] Multi-Object Tracking with Distributed Sensing
    Dias, Ricardo
    Lau, Nuno
    Silva, Joao
    Lim, Gi Hyun
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2016, : 564 - 569
  • [47] MeMOT: Multi-Object Tracking with Memory
    Cai, Jiarui
    Xu, Mingze
    Li, Wei
    Xiong, Yuanjun
    Xia, Wei
    Tu, Zhuowen
    Soatto, Stefano
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8080 - 8090
  • [48] HumanTop: a multi-object tracking tabletop
    Soto Candela, Emilio
    Ortega Perez, Mario
    Marin Romero, Clemente
    Perez Lopez, David C.
    Salvador Herranz, Gustavo
    Contero, Manuel
    Alcaniz Raya, Mariano
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 70 (03) : 1837 - 1868
  • [49] A Robust Framework for Multi-object Tracking
    Jalal, Anand Singh
    Singh, Vrijendra
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT 4, 2011, 193 : 329 - 338
  • [50] SiamMOT: Siamese Multi-Object Tracking
    Shuai, Bing
    Berneshawi, Andrew
    Li, Xinyu
    Modolo, Davide
    Tighe, Joseph
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12367 - 12377