Gradient projection and conditional gradient methods for constrained nonconvex minimization

被引:0
|
作者
Balashov, M.V. [1 ]
Polyak, B.T. [1 ]
Tremba, A.A. [1 ]
机构
[1] V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya street, Moscow,117997, Russia
来源
arXiv | 2019年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Convex optimization
引用
收藏
相关论文
共 50 条
  • [31] Two spectral gradient projection methods for constrained equations and their linear convergence rate
    Jing Liu
    Yongrui Duan
    [J]. Journal of Inequalities and Applications, 2015
  • [32] Steplength selection in gradient projection methods for box-constrained quadratic programs
    Crisci, Serena
    Ruggiero, Valeria
    Zanni, Luca
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 356 : 312 - 327
  • [33] Two spectral gradient projection methods for constrained equations and their linear convergence rate
    Liu, Jing
    Duan, Yongrui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [34] Two adaptive scaled gradient projection methods for Stiefel manifold constrained optimization
    Harry Oviedo
    Oscar Dalmau
    Hugo Lara
    [J]. Numerical Algorithms, 2021, 87 : 1107 - 1127
  • [35] Gradient Based Projection Method for Constrained Optimization
    Mills, Greg
    Krstic, Miroslav
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2966 - 2971
  • [36] The Gradient Projection Algorithm for Smooth Sets and Functions in Nonconvex Case
    Balashov, Maxim V.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (02) : 341 - 360
  • [37] The Gradient Projection Algorithm for Smooth Sets and Functions in Nonconvex Case
    Maxim V. Balashov
    [J]. Set-Valued and Variational Analysis, 2021, 29 : 341 - 360
  • [38] GENERALIZED CONDITIONAL GRADIENT WITH AUGMENTED LAGRANGIAN FOR COMPOSITE MINIMIZATION
    Silveti-Falls, Antonio
    Molinari, Cesare
    Fadili, Jalal
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 2687 - 2725
  • [39] Convergence of the Gradient Projection Method for Generalized Convex Minimization
    Changyu Wang
    Naihua Xiu
    [J]. Computational Optimization and Applications, 2000, 16 : 111 - 120
  • [40] Gradient-Free Method for Heavily Constrained Nonconvex Optimization
    Shi, Wanli
    Gao, Hongchang
    Gu, Bin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,