The Gradient Projection Algorithm for Smooth Sets and Functions in Nonconvex Case

被引:6
|
作者
Balashov, Maxim V. [1 ]
机构
[1] Russian Acad Sci, VA Trapeznikov Inst Control Sci, 65 Profsoyuznaya St, Moscow 117997, Russia
基金
俄罗斯科学基金会;
关键词
Lipschitz continuous gradient; Proximal smoothness; Gradient projection algorithm; Metric projection; Nonconvex extremal problem; Lezanski-Polyak-Lojasiewicz condition; WEAK CONVEXITY;
D O I
10.1007/s11228-020-00550-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of minimization for a function with Lipschitz continuous gradient on a proximally smooth and smooth manifold in a finite dimensional Euclidean space. We consider the Lezanski-Polyak-Lojasiewicz (LPL) conditions in this problem of constrained optimization. We prove that the gradient projection algorithm for the problem converges with a linear rate when the LPL condition holds.
引用
收藏
页码:341 / 360
页数:20
相关论文
共 50 条
  • [1] The Gradient Projection Algorithm for Smooth Sets and Functions in Nonconvex Case
    Maxim V. Balashov
    [J]. Set-Valued and Variational Analysis, 2021, 29 : 341 - 360
  • [2] An Alternating Gradient Projection Algorithm with Momentum for Nonconvex-Concave Minimax Problems
    Li, Jue-You
    Xie, Tao
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [3] The gradient projection algorithm for a proximally smooth set and a function with Lipschitz continuous gradient
    Balashov, M. V.
    [J]. SBORNIK MATHEMATICS, 2020, 211 (04) : 481 - 504
  • [4] Cyclic projection methods on a class of nonconvex sets
    Chretien, S
    Bondon, P
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (1-2) : 37 - 56
  • [5] Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization
    Balashov, M. V.
    Polyak, B. T.
    Tremba, A. A.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (07) : 822 - 849
  • [6] Gradient projection and conditional gradient methods for constrained nonconvex minimization
    Balashov, M.V.
    Polyak, B.T.
    Tremba, A.A.
    [J]. arXiv, 2019,
  • [7] FAST RESOLVING OF THE NONCONVEX OPTIMIZATION WITH GRADIENT PROJECTION
    Shen, Fangfang
    Shi, Guangming
    Zhao, Guanghui
    Niu, Yi
    [J]. 2015 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2015, 9622
  • [8] On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set
    Balashov, M., V
    [J]. MATHEMATICAL NOTES, 2020, 108 (5-6) : 643 - 651
  • [9] On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set
    M. V. Balashov
    [J]. Mathematical Notes, 2020, 108 : 643 - 651
  • [10] Generalized (f, λ)-projection operator on closed nonconvex sets and its applications in reflexive smooth Banach spaces
    Bounkhel, Messaoud
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 29555 - 29568