Predicting who has delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage using machine learning approach: a multicenter, retrospective cohort study

被引:2
|
作者
Ge, Sihan [1 ]
Chen, Junxin [2 ]
Wang, Wei [3 ,11 ]
Zhang, Li-bo [4 ]
Teng, Yue [5 ]
Yang, Cheng [6 ]
Wang, Hao [7 ]
Tao, Yihao [8 ]
Chen, Zhi [6 ]
Li, Ronghao [9 ]
Niu, Yin [6 ]
Zuo, Chenghai [6 ]
Tan, Liang [10 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China
[2] Dalian Univ Technol, Sch Software, Dalian, Peoples R China
[3] Shenzhen MSU BIT Univ, Artificial Intelligence Res Inst, Guangdong Hong Kong Macao Joint Lab Emot Intellige, Shenzhen, Peoples R China
[4] Gen Hosp Northern Theater Chinese Peoples Liberat, Dept Radiol, Shenyang, Peoples R China
[5] Gen Hosp Northern Theater Chinese Peoples Liberat, Emergency Dept, Shenyang, Peoples R China
[6] Army Med Univ Third Mil Med Univ, Southwest Hosp, Dept Neurosurg, Chongqing, Peoples R China
[7] Army Med Univ Third Mil Med Univ, Dept Neurosurg, Dept Pathol, Chongqing, Peoples R China
[8] Chongqing Med Univ, Affiliated Hosp 2, Dept Neurosurg, Chongqing, Peoples R China
[9] Army Med Univ, Dept Basic Med, Chongqing, Peoples R China
[10] Army Med Univ Third Mil Med Univ, Southwest Hosp, Dept Crit Care Med, Chongqing, Peoples R China
[11] Beijing Inst Technol, Sch Med Technol, Beijing, Peoples R China
关键词
Aneurysmal subarachnoid hemorrhage; Delayed cerebral ischemia; Machine learning; Prediction; Random forest; VASOSPASM; COILING;
D O I
10.1186/s12883-024-03630-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Early prediction of delayed cerebral ischemia (DCI) is critical to improving the prognosis of aneurysmal subarachnoid hemorrhage (aSAH). Machine learning (ML) algorithms can learn from intricate information unbiasedly and facilitate the early identification of clinical outcomes. This study aimed to construct and compare the ability of different ML models to predict DCI after aSAH. Then, we identified and analyzed the essential risk of DCI occurrence by preoperative clinical scores and postoperative laboratory test results.Methods This was a multicenter, retrospective cohort study. A total of 1039 post-operation patients with aSAH were finally included from three hospitals in China. The training group contained 919 patients, and the test group comprised 120 patients. We used five popular machine-learning algorithms to construct the models. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, precision, and f1 score were used to evaluate and compare the five models. Finally, we performed a Shapley Additive exPlanations analysis for the model with the best performance and significance analysis for each feature.Results A total of 239 patients with aSAH (23.003%) developed DCI after the operation. Our results showed that in the test cohort, Random Forest (RF) had an AUC of 0.79, which was better than other models. The five most important features for predicting DCI in the RF model were the admitted modified Rankin Scale, D-Dimer, intracranial parenchymal hematoma, neutrophil/lymphocyte ratio, and Fisher score. Interestingly, clamping or embolization for the aneurysm treatment was the fourth button-down risk factor in the ML model.Conclusions In this multicenter study, we compared five ML methods, among which RF performed the best in DCI prediction. In addition, the essential risks were identified to help clinicians monitor the patients at high risk for DCI more precisely and facilitate timely intervention.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Machine Learning Analysis of Matricellular Proteins and Clinical Variables for Early Prediction of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage
    Tanioka, Satoru
    Ishida, Fujimaro
    Nakano, Fumi
    Kawakita, Fumihiro
    Kanamaru, Hideki
    Nakatsuka, Yoshinari
    Nishikawa, Hirofumi
    Suzuki, Hidenori
    [J]. MOLECULAR NEUROBIOLOGY, 2019, 56 (10) : 7128 - 7135
  • [42] Machine Learning to Predict Delayed Cerebral Ischemia and Outcomes in Subarachnoid Hemorrhage
    Savarraj, Jude P. J.
    Hergenroeder, Georgene W.
    Zhu, Liang
    Chang, Tiffany
    Park, Soojin
    Megjhani, Murad
    Vahidy, Farhaan S.
    Zhao, Zhongming
    Kitagawa, Ryan S.
    Choi, H. Alex
    [J]. NEUROLOGY, 2021, 96 (04) : E553 - E562
  • [43] TRANSCRANIAL DOPPLER FOR PREDICTING DELAYED CEREBRAL ISCHEMIA AFTER SUBARACHNOID HEMORRHAGE
    Carrera, Emmanuel
    Schmidt, J. Michael
    Oddo, Mauro
    Fernandez, Luis
    Claassen, Jan
    Seder, David
    Lee, Kiwon
    Badjatia, Neeraj
    Connolly, E. Sander
    Mayer, Stephan A.
    [J]. NEUROSURGERY, 2009, 65 (02) : 316 - 323
  • [44] Longitudinal neuropsychological assessment after aneurysmal subarachnoid hemorrhage and its relationship with delayed cerebral ischemia: a prospective Swiss multicenter study
    Stienen, Martin N.
    Germans, Menno R.
    Zindel-Geisseler, Olivia
    Dannecker, Noemi
    Rothacher, Yannick
    Schlosser, Ladina
    Velz, Julia
    Sebok, Martina
    Eggenberger, Noemi
    May, Adrien
    Haemmerli, Julien
    Bijlenga, Philippe
    Schaller, Karl
    Guerra-Lopez, Ursula
    Maduri, Rodolfo
    Beaud, Valerie
    Al-Taha, Khalid
    Daniel, Roy Thomas
    Chiappini, Alessio
    Rossi, Stefania
    Robert, Thomas
    Bonasia, Sara
    Goldberg, Johannes
    Fung, Christian
    Bervini, David
    Maradan-Gachet, Marie Elise
    Gutbrod, Klemens
    Maldaner, Nicolai
    Neidert, Marian C.
    Frueh, Severin
    Schwind, Marc
    Bozinov, Oliver
    Brugger, Peter
    Keller, Emanuela
    Marr, Angelina
    Roux, Sebastien
    Regli, Luca
    [J]. JOURNAL OF NEUROSURGERY, 2022, 137 (06) : 1742 - 1750
  • [45] Genetic determinants of cerebral vasospasm, delayed cerebral ischemia, and outcome after aneurysmal subarachnoid hemorrhage
    Ducruet, Andrew F.
    Gigante, Paul R.
    Hickman, Zachary L.
    Zacharia, Brad E.
    Arias, Eric J.
    Grobelny, Bartosz T.
    Gorski, Justin W.
    Mayer, Stephan A.
    Connolly, E. Sander, Jr.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2010, 30 (04): : 676 - 688
  • [46] Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage
    Jan W. Dankbaar
    Mienke Rijsdijk
    Irene C. van der Schaaf
    Birgitta K. Velthuis
    Marieke J. H. Wermer
    Gabriel J. E. Rinkel
    [J]. Neuroradiology, 2009, 51 : 813 - 819
  • [47] Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage
    Dankbaar, Jan W.
    Rijsdijk, Mienke
    van der Schaaf, Irene C.
    Velthuis, Birgitta K.
    Wermer, Marieke J. H.
    Rinkel, Gabriel J. E.
    [J]. NEURORADIOLOGY, 2009, 51 (12) : 813 - 819
  • [48] Global and focal cerebral perfusion after aneurysmal subarachnoid hemorrhage in relation with delayed cerebral ischemia
    M. Rijsdijk
    I. C. van der Schaaf
    B. K. Velthuis
    M. J. Wermer
    G. J. E. Rinkel
    [J]. Neuroradiology, 2008, 50 : 813 - 820
  • [49] Global and focal cerebral perfusion after aneurysmal subarachnoid hemorrhage in relation with delayed cerebral ischemia
    Rijsdijk, M.
    van der Schaaf, I. C.
    Velthuis, B. K.
    Wermer, M. J.
    Rinkel, G. J. E.
    [J]. NEURORADIOLOGY, 2008, 50 (09) : 813 - 820
  • [50] Optimal Cerebral Perfusion Pressure During Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage
    Weiss, Miriam
    Albanna, Walid
    Conzen, Catharina
    Megjhani, Murad
    Tas, Jeanette
    Seyfried, Katharina
    Kastenholz, Nick
    Veldeman, Michael
    Schmidt, Tobias Philip
    Schulze-Steinen, Henna
    Wiesmann, Martin
    Clusmann, Hans
    Park, Soojin
    Aries, Marcel
    Schubert, Gerrit Alexander
    [J]. CRITICAL CARE MEDICINE, 2022, 50 (02) : 183 - 191