Machine Learning to Predict Delayed Cerebral Ischemia and Outcomes in Subarachnoid Hemorrhage

被引:36
|
作者
Savarraj, Jude P. J. [1 ]
Hergenroeder, Georgene W. [1 ]
Zhu, Liang [2 ]
Chang, Tiffany [1 ]
Park, Soojin [6 ]
Megjhani, Murad [6 ]
Vahidy, Farhaan S. [3 ]
Zhao, Zhongming [4 ,5 ]
Kitagawa, Ryan S. [1 ]
Choi, H. Alex [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Dept Neurosurg, Ctr Precis Hlth, McGovern Med Sch, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Internal Med, Ctr Precis Hlth, McGovern Med Sch, Houston, TX 77030 USA
[3] Univ Texas Hlth Sci Ctr Houston, Dept Neurol, Ctr Precis Hlth, McGovern Med Sch, Houston, TX 77030 USA
[4] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
[5] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Sch Publ Hlth, Houston, TX 77030 USA
[6] Columbia Univ, Dept Neurol, New York, NY 10027 USA
关键词
INDEPENDENT RISK-FACTOR; SYMPTOMATIC VASOSPASM; PROGNOSTIC-SIGNIFICANCE; PLATELET; COUNT; LEUKOCYTOSIS;
D O I
10.1212/WNL.0000000000011211
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective To determine whether machine learning (ML) algorithms can improve the prediction of delayed cerebral ischemia (DCI) and functional outcomes after subarachnoid hemorrhage (SAH). Methods ML models and standard models (SMs) were trained to predict DCI and functional outcomes with data collected within 3 days of admission. Functional outcomes at discharge and at 3 months were quantified using the modified Rankin Scale (mRS) for neurologic disability (dichotomized as good [mRS <= 3] vs poor [mRS >= 4] outcomes). Concurrently, clinicians prospectively prognosticated 3-month outcomes of patients. The performance of ML, SMs, and clinicians were retrospectively compared. Results DCI status, discharge, and 3-month outcomes were available for 399, 393, and 240 participants, respectively. Prospective clinician (an attending, a fellow, and a nurse) prognostication of 3-month outcomes was available for 90 participants. ML models yielded predictions with the following area under the receiver operating characteristic curve (AUC) scores: 0.75 +/- 0.07 (95% confidence interval [CI] 0.64-0.84) for DCI, 0.85 +/- 0.05 (95% CI 0.75-0.92) for discharge outcome, and 0.89 +/- 0.03 (95% CI 0.81-0.94) for 3-month outcome. ML outperformed SMs, improving AUC by 0.20 (95% CI -0.02 to 0.4) for DCI, by 0.07 +/- 0.03 (95% CI -0.0018 to 0.14) for discharge outcomes, and by 0.14 (95% CI 0.03-0.24) for 3-month outcomes and matched physician's performance in predicting 3-month outcomes. Conclusion ML models significantly outperform SMs in predicting DCI and functional outcomes and has the potential to improve SAH management.
引用
收藏
页码:E553 / E562
页数:10
相关论文
共 50 条
  • [1] Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage
    Ramos, Lucas Alexandre
    van der Steen, Wessel E.
    Barros, Renan Sales
    Majoie, Charles B. L. M.
    van den Berg, Rene
    Verbaan, Dagmar
    Vandertop, W. Peter
    Zijlstra, I. Jsbrand Andreas Jan
    Zwinderman, A. H.
    Strijkers, Gustav J.
    Olabarriaga, Silvia Delgado
    Marquering, Henk A.
    [J]. JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2019, 11 (05) : 497 - +
  • [2] Epileptiform abnormalities predict delayed cerebral ischemia in subarachnoid hemorrhage
    Kim, J. A.
    Rosenthal, E. S.
    Biswal, S.
    Zafar, S.
    Shenoy, A. V.
    O'Connor, K. L.
    Bechek, S. C.
    Moura, J. Valdery
    Shafi, M. M.
    Patel, A. B.
    Cash, S. S.
    Westover, M. B.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2017, 128 (06) : 1091 - 1099
  • [3] Machine Learning Algorithms to Predict Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Systematic Review and Meta-analysis
    Santana, Lais Silva
    Diniz, Jordana Borges Camargo
    Rabelo, Nicollas Nunes
    Teixeira, Manoel Jacobsen
    Figueiredo, Eberval Gadelha
    Telles, Joao Paulo Mota
    [J]. NEUROCRITICAL CARE, 2023, 40 (3) : 1171 - 1181
  • [4] Can epileptiform abnormalities predict delayed cerebral ischemia in subarachnoid hemorrhage?
    Martin, Andrew
    Claassen, Jan
    [J]. CLINICAL NEUROPHYSIOLOGY, 2017, 128 (06) : 1037 - 1038
  • [5] Machine learning analysis of heart rate variability to detect delayed cerebral ischemia in subarachnoid hemorrhage
    Herges, Helena Odenstedt
    Vithal, Richard
    El-Merhi, Ali
    Naredi, Silvana
    Staron, Miroslaw
    Block, Linda
    [J]. ACTA NEUROLOGICA SCANDINAVICA, 2022, 145 (02): : 151 - 159
  • [6] Delayed Cerebral Ischemia after Subarachnoid Hemorrhage
    Ikram, Asad
    Javaid, Muhammad Ali
    Ortega-Gutierrez, Santiago
    Selim, Magdy
    Kelangi, Sarah
    Anwar, Syed Muhammad Hamza
    Torbey, Michel T.
    Divani, Afshin A.
    [J]. JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2021, 30 (11):
  • [7] MACHINE LEARNING MODEL OF EEG TRENDS PREDICTS DELAYED CEREBRAL ISCHEMIA POST-SUBARACHNOID HEMORRHAGE
    Zheng, Wei-Long
    Kim, Jennifer
    Zafar, Sahar
    Rosenthal, Eric
    Westover, M.
    [J]. CRITICAL CARE MEDICINE, 2020, 48
  • [8] VASOPRESSORS DOES NOT IMPROVE OUTCOMES OF DELAYED CEREBRAL ISCHEMIA AFTER SUBARACHNOID HEMORRHAGE
    Yousef, Khalil
    Crago, Elizabeth
    Price, Thomas
    Lagattuta, Theodore
    Sherwood, Paula
    [J]. CRITICAL CARE MEDICINE, 2014, 42 (12)
  • [9] Eicosanoid Ratios Predict the Development of Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage
    Siler, Dominic A.
    Semonche, Alexa
    Liu, Jesse J. X.
    Martini, Ross
    Hinson, Holly
    Cetas, Justin S.
    [J]. NEUROSURGERY, 2020, 67 : 84 - 84
  • [10] Eicosanoid ratios are associated with hemorrhage severity and predict development of delayed cerebral ischemia following subarachnoid hemorrhage
    Siler, Dominic A.
    Semonche, Alexa M.
    Samatham, Ravi
    Liu, Jesse J.
    Martini, Ross P.
    Alkayed, Nabil J.
    Hinson, Holly E.
    Cetas, Justin S.
    [J]. BRAIN HEMORRHAGES, 2022, 3 (04): : 135 - 142