Machine Learning to Predict Delayed Cerebral Ischemia and Outcomes in Subarachnoid Hemorrhage

被引:36
|
作者
Savarraj, Jude P. J. [1 ]
Hergenroeder, Georgene W. [1 ]
Zhu, Liang [2 ]
Chang, Tiffany [1 ]
Park, Soojin [6 ]
Megjhani, Murad [6 ]
Vahidy, Farhaan S. [3 ]
Zhao, Zhongming [4 ,5 ]
Kitagawa, Ryan S. [1 ]
Choi, H. Alex [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Dept Neurosurg, Ctr Precis Hlth, McGovern Med Sch, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Internal Med, Ctr Precis Hlth, McGovern Med Sch, Houston, TX 77030 USA
[3] Univ Texas Hlth Sci Ctr Houston, Dept Neurol, Ctr Precis Hlth, McGovern Med Sch, Houston, TX 77030 USA
[4] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
[5] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Sch Publ Hlth, Houston, TX 77030 USA
[6] Columbia Univ, Dept Neurol, New York, NY 10027 USA
关键词
INDEPENDENT RISK-FACTOR; SYMPTOMATIC VASOSPASM; PROGNOSTIC-SIGNIFICANCE; PLATELET; COUNT; LEUKOCYTOSIS;
D O I
10.1212/WNL.0000000000011211
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective To determine whether machine learning (ML) algorithms can improve the prediction of delayed cerebral ischemia (DCI) and functional outcomes after subarachnoid hemorrhage (SAH). Methods ML models and standard models (SMs) were trained to predict DCI and functional outcomes with data collected within 3 days of admission. Functional outcomes at discharge and at 3 months were quantified using the modified Rankin Scale (mRS) for neurologic disability (dichotomized as good [mRS <= 3] vs poor [mRS >= 4] outcomes). Concurrently, clinicians prospectively prognosticated 3-month outcomes of patients. The performance of ML, SMs, and clinicians were retrospectively compared. Results DCI status, discharge, and 3-month outcomes were available for 399, 393, and 240 participants, respectively. Prospective clinician (an attending, a fellow, and a nurse) prognostication of 3-month outcomes was available for 90 participants. ML models yielded predictions with the following area under the receiver operating characteristic curve (AUC) scores: 0.75 +/- 0.07 (95% confidence interval [CI] 0.64-0.84) for DCI, 0.85 +/- 0.05 (95% CI 0.75-0.92) for discharge outcome, and 0.89 +/- 0.03 (95% CI 0.81-0.94) for 3-month outcome. ML outperformed SMs, improving AUC by 0.20 (95% CI -0.02 to 0.4) for DCI, by 0.07 +/- 0.03 (95% CI -0.0018 to 0.14) for discharge outcomes, and by 0.14 (95% CI 0.03-0.24) for 3-month outcomes and matched physician's performance in predicting 3-month outcomes. Conclusion ML models significantly outperform SMs in predicting DCI and functional outcomes and has the potential to improve SAH management.
引用
下载
收藏
页码:E553 / E562
页数:10
相关论文
共 50 条
  • [21] Tissue kallikrein: A potential serum biomarker to predict delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage
    Bian, Lin
    Shen, Feng
    Mao, Lian-Gang
    Zhou, Wei
    Liu, Zheng
    Chen, Guang-Lie
    CLINICA CHIMICA ACTA, 2020, 502 : 148 - 152
  • [22] Diagnostic value of transcranial doppler to predict delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage
    van der Harst, J. Joep
    Elting, Jan Willem J.
    Hijlkema, Johanna
    Veeger, Nic J. G. M.
    van Donkelaar, Carlina E.
    van Dijk, J. Marc C.
    Uyttenboogaart, Maarten
    ACTA NEUROCHIRURGICA, 2024, 166 (01)
  • [23] Functional Outcomes and Delayed Cerebral Ischemia Following Nonperimesencephalic Angiogram-Negative Subarachnoid Hemorrhage Similar to Aneurysmal Subarachnoid Hemorrhage
    Al-Mufti, Fawaz
    Merkler, Alexander E.
    Boehme, Amelia K.
    Dancour, Elie
    May, Theresa
    Schmidt, J. Michael
    Park, Soojin
    Connolly, E. Sander
    Lavine, Sean D.
    Meyers, Philip M.
    Claassen, Jan
    Agarwal, Sachin
    NEUROSURGERY, 2018, 82 (03) : 359 - 363
  • [24] Non-cerebral vasospasm factors and cerebral vasospasm predict delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage
    Chen Yue
    Li Guanmin
    Chen Xiaoyong
    Wang Dengliang
    Fang Wenhua
    Kang Dezhi
    Ding Chenyu
    中华医学杂志(英文版), 2022, 135 (02) : 222 - 224
  • [25] Non-cerebral vasospasm factors and cerebral vasospasm predict delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage
    Chen, Yue
    Li, Guanmin
    Chen, Xiaoyong
    Wang, Dengliang
    Fang, Wenhua
    Kang, Dezhi
    Ding, Chenyu
    CHINESE MEDICAL JOURNAL, 2022, 135 (02) : 222 - 224
  • [26] The Role of Thromboinflammation in Delayed Cerebral ischemia after Subarachnoid Hemorrhage
    McBride, Devin W.
    Blackburn, Spiros L.
    Kumar, Peeyush T.
    Matsumura, Kanako
    Zhang, John H.
    FRONTIERS IN NEUROLOGY, 2017, 8
  • [27] Pharmacological treatment of delayed cerebral ischemia and vasospasm in subarachnoid hemorrhage
    Castanares-Zapatero, Diego
    Hantson, Philippe
    ANNALS OF INTENSIVE CARE, 2011, 1
  • [28] Subarachnoid Hemorrhage, Delayed Cerebral Ischemia, and Milrinone Use in Canada
    Eagles, Matthew E.
    MacLean, Mark A.
    Kameda-Smith, Michelle M.
    Duda, Taylor
    Persad, Amit R. L.
    Almojuela, Alysa
    Bokhari, Rakan
    Iorio-Morin, Christian
    Elkaim, Lior M.
    Rizzuto, Michael A.
    Lownie, Stephen P.
    Christie, Sean D.
    Teitelbaum, Jeanne
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2023, 50 (03) : 380 - 388
  • [29] Devastating delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage
    Koopman, Inez
    van Wijngaarden, Philippine B.
    Rinkel, Gabriel J. E.
    Vergouwen, Mervyn D. I.
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [30] Risk factors for delayed cerebral ischemia after subarachnoid hemorrhage
    Claassen, J
    Copeland, D
    Kreiter, K
    Bates, J
    Connolly, ES
    Mayer, SA
    ANNALS OF NEUROLOGY, 2000, 48 (03) : 422 - 422