PhoBERT: Pre-trained language models for Vietnamese

被引:0
|
作者
Dat Quoc Nguyen [1 ]
Anh Tuan Nguyen [2 ]
机构
[1] VinAI Res, Hanoi, Vietnam
[2] NVIDIA, Santa Clara, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present PhoBERT with two versionsPhoBERTbase and PhoBERTlarge-the first public large-scale monolingual language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. We release PhoBERT to facilitate future research and downstream applications for Vietnamese NLP. Our PhoBERT models are available at: https://github. com/VinAIResearch/PhoBERT.
引用
收藏
页码:1037 / 1042
页数:6
相关论文
共 50 条
  • [31] Leveraging Pre-trained Language Models for Gender Debiasing
    Jain, Nishtha
    Popovic, Maja
    Groves, Declan
    Specia, Lucia
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 2188 - 2195
  • [32] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430
  • [33] Exploring Robust Overfitting for Pre-trained Language Models
    Zhu, Bin
    Rao, Yanghui
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5506 - 5522
  • [34] Self-conditioning Pre-Trained Language Models
    Suau, Xavier
    Zappella, Luca
    Apostoloff, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [35] Commonsense Knowledge Transfer for Pre-trained Language Models
    Zhou, Wangchunshu
    Le Bras, Ronan
    Choi, Yejin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5946 - 5960
  • [36] Pre-trained models for natural language processing: A survey
    QIU XiPeng
    SUN TianXiang
    XU YiGe
    SHAO YunFan
    DAI Ning
    HUANG XuanJing
    Science China(Technological Sciences), 2020, 63 (10) : 1872 - 1897
  • [37] Evaluating the Summarization Comprehension of Pre-Trained Language Models
    Chernyshev, D. I.
    Dobrov, B. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (08) : 3028 - 3039
  • [38] Pre-trained language models: What do they know?
    Guimaraes, Nuno
    Campos, Ricardo
    Jorge, Alipio
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 14 (01)
  • [39] Capturing Semantics for Imputation with Pre-trained Language Models
    Mei, Yinan
    Song, Shaoxu
    Fang, Chenguang
    Yang, Haifeng
    Fang, Jingyun
    Long, Jiang
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 61 - 72
  • [40] Empowering News Recommendation with Pre-trained Language Models
    Wu, Chuhan
    Wu, Fangzhao
    Qi, Tao
    Huang, Yongfeng
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1652 - 1656