Distance-Statistical based Byzantine-robust algorithms in Federated Learning

被引:2
|
作者
Colosimo, Francesco [1 ]
De Rango, Floriano [1 ]
机构
[1] Univ Calabria, Dept Informat Modeling Elect & Syst DIMES, Arcavacata Di Rende, Italy
关键词
Federated Learning; Machine Learning; Byzantine attack; security; model poisoning attack;
D O I
10.1109/CCNC51664.2024.10454840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New machine learning (ML) paradigms are being researched thanks to the current widespread adoption of AI-based services. Since it enables several users to cooperatively train a global model without disclosing their local training data, Federated Learning (FL) represents a new distributed methodology capable of attaining stronger privacy and security guarantees than current methodologies. In this paper, a study of the properties of FL is conducted, with an emphasis on security issues. In detail, a thorough investigation of currently known vulnerabilities and their corresponding countermeasures is conducted, focusing on aggregation algorithms that provide robustness against Byzantine failures. Following this direction, new aggregation algorithms are observed on a set of simulations that recreate realistic scenarios, in the absence and presence of Byzantine adversaries. These combine the Distance-based Krum approach with the Statistical based aggregation algorithm. Achieved results demonstrate the functionality of the proposed solutions in terms of accuracy and convergence rounds in comparison with well-known federated algorithms under a correct and incorrect estimation of the attackers number.
引用
收藏
页码:1034 / 1035
页数:2
相关论文
共 50 条
  • [31] Byzantine-Robust Federated Learning with Variance Reduction and Differential Privacy
    Zhang, Zikai
    Hu, Rui
    2023 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY, CNS, 2023,
  • [32] SEAR: Secure and Efficient Aggregation for Byzantine-Robust Federated Learning
    Zhao, Lingchen
    Jiang, Jianlin
    Feng, Bo
    Wang, Qian
    Shen, Chao
    Li, Qi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (05) : 3329 - 3342
  • [33] FLForest: Byzantine-robust Federated Learning through Isolated Forest
    Wang, Tao
    Zhao, Bo
    Fang, Liming
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 296 - 303
  • [34] Byzantine-robust Federated Learning via Cosine Similarity Aggregation
    Zhu, Tengteng
    Guo, Zehua
    Yao, Chao
    Tan, Jiaxin
    Dou, Songshi
    Wang, Wenrun
    Han, Zhenzhen
    COMPUTER NETWORKS, 2024, 254
  • [35] Byzantine-Robust and Communication-Efficient Personalized Federated Learning
    Zhang, Jiaojiao
    He, Xuechao
    Huang, Yue
    Ling, Qing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 26 - 39
  • [36] Byzantine-Robust and Privacy-Preserving Federated Learning With Irregular Participants
    Chen, Yinuo
    Tan, Wuzheng
    Zhong, Yijian
    Kang, Yulin
    Yang, Anjia
    Weng, Jian
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 35193 - 35205
  • [37] FedNAT: Byzantine-robust Federated Learning through Activation-based Attention Transfer
    Wang, Mengxin
    Fang, Liming
    Chen, Kuiqi
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1005 - 1012
  • [38] Communication-Efficient and Byzantine-Robust Differentially Private Federated Learning
    Li, Min
    Xiao, Di
    Liang, Jia
    Huang, Hui
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (08) : 1725 - 1729
  • [39] Byzantine-robust federated learning over Non-IID data
    Ma X.
    Li Q.
    Jiang Q.
    Ma Z.
    Gao S.
    Tian Y.
    Ma J.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (06): : 138 - 153
  • [40] Byzantine-Robust Privacy-Preserving Federated Learning Based on DT-PKC
    Jiang, Wenhao
    Fu, Shaojing
    Luo, Yuchuan
    Liu, Lin
    Wang, Yongjun
    FRONTIERS IN CYBER SECURITY, FCS 2023, 2024, 1992 : 205 - 219