Distance-Statistical based Byzantine-robust algorithms in Federated Learning

被引:2
|
作者
Colosimo, Francesco [1 ]
De Rango, Floriano [1 ]
机构
[1] Univ Calabria, Dept Informat Modeling Elect & Syst DIMES, Arcavacata Di Rende, Italy
关键词
Federated Learning; Machine Learning; Byzantine attack; security; model poisoning attack;
D O I
10.1109/CCNC51664.2024.10454840
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New machine learning (ML) paradigms are being researched thanks to the current widespread adoption of AI-based services. Since it enables several users to cooperatively train a global model without disclosing their local training data, Federated Learning (FL) represents a new distributed methodology capable of attaining stronger privacy and security guarantees than current methodologies. In this paper, a study of the properties of FL is conducted, with an emphasis on security issues. In detail, a thorough investigation of currently known vulnerabilities and their corresponding countermeasures is conducted, focusing on aggregation algorithms that provide robustness against Byzantine failures. Following this direction, new aggregation algorithms are observed on a set of simulations that recreate realistic scenarios, in the absence and presence of Byzantine adversaries. These combine the Distance-based Krum approach with the Statistical based aggregation algorithm. Achieved results demonstrate the functionality of the proposed solutions in terms of accuracy and convergence rounds in comparison with well-known federated algorithms under a correct and incorrect estimation of the attackers number.
引用
收藏
页码:1034 / 1035
页数:2
相关论文
共 50 条
  • [11] BRFL: A blockchain-based byzantine-robust federated learning model
    Li, Yang
    Xia, Chunhe
    Li, Chang
    Wang, Tianbo
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2025, 196
  • [12] CareFL: Contribution Guided Byzantine-Robust Federated Learning
    Dong, Qihao
    Yang, Shengyuan
    Dai, Zhiyang
    Gao, Yansong
    Wang, Shang
    Cao, Yuan
    Fu, Anmin
    Susilo, Willy
    IEEE Transactions on Information Forensics and Security, 2024, 19 : 9714 - 9729
  • [13] Privacy-preserving Byzantine-robust federated learning
    Ma, Xu
    Zhou, Yuqing
    Wang, Laihua
    Miao, Meixia
    COMPUTER STANDARDS & INTERFACES, 2022, 80
  • [14] Towards Federated Learning with Byzantine-Robust Client Weighting
    Portnoy, Amit
    Tirosh, Yoav
    Hendler, Danny
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [15] Privacy-Preserving and Byzantine-Robust Federated Learning
    Dong, Caiqin
    Weng, Jian
    Li, Ming
    Liu, Jia-Nan
    Liu, Zhiquan
    Cheng, Yudan
    Yu, Shui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (02) : 889 - 904
  • [16] BOBA: Byzantine-Robust Federated Learning with Label Skewness
    Bao, Wenxuan
    Wu, Jun
    He, Jingrui
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [17] Byzantine-Robust Federated Learning through Dynamic Clustering
    Wang, Hanyu
    Wang, Liming
    Li, Hongjia
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 222 - 230
  • [18] Byzantine-Robust and Efficient Federated Learning for the Internet of Things
    Jin R.
    Hu J.
    Min G.
    Lin H.
    IEEE Internet of Things Magazine, 2022, 5 (01): : 114 - 118
  • [19] FedCom: Byzantine-Robust Federated Learning Using Data Commitment
    Zhao, Bo
    Wang, Tao
    Fang, Liming
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 33 - 38
  • [20] AFL: Attention-based Byzantine-robust Federated Learning with Vector Filter
    Chen, Hao
    Lv, Xixiang
    Zheng, Wei
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 595 - 600