A fully automatic parenchyma extraction method for MRI T2*relaxometry of iron loaded liver in transfusion-dependent patients

被引:0
|
作者
Lian, Zifeng [1 ,2 ,3 ,4 ,5 ,6 ]
Lu, Qiqi [1 ,2 ,3 ,4 ,5 ,6 ]
Lin, Bingquan [7 ]
Chen, Lingjian [8 ]
Gong, Jian [1 ]
Hu, Qiugen [1 ,8 ]
Wang, Huafeng [1 ,8 ]
Feng, Yanqiu [1 ,2 ,3 ,4 ,5 ,6 ,8 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou, Peoples R China
[3] Southern Med Univ, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou, Peoples R China
[4] Southern Med Univ, Guangdong Hong Kong Macao Greater Bay Area Ctr Bra, Guangdong Hong Kong Macao Greater Bay Area, Guangzhou, Peoples R China
[5] Southern Med Univ, Key Lab Mental Hlth, Minist Educ, Guangzhou, Peoples R China
[6] Southern Med Univ, Guangdong Hong Kong Joint Lab Psychiat Disorders, Guangzhou, Peoples R China
[7] Southern Med Univ, Nanfang Hosp, Dept Med Imaging Ctr, Guangzhou, Peoples R China
[8] Southern Med Univ, Shunde Hosp, Peoples Hosp Shunde 1, Dept Radiol, Foshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic resonance imaging; T2*relaxometry; Liver iron loaded; Deep learning; Segmentation; SICKLE-CELL-DISEASE; WHOLE-LIVER; QUANTIFICATION; OVERLOAD; THALASSEMIA; RELAXOMETRY; THERAPY; STORES;
D O I
10.1016/j.mri.2024.02.017
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop a fully automatic parenchyma extraction method for the T2* relaxometry of iron overload liver. Methods: A retrospective multicenter collection of liver MR examinations from 177 transfusion-dependent patients was conducted. The proposed method extended a semiautomatic parenchyma extraction algorithm to a fully automatic approach by introducing a modified TransUNet on the R2* (1/T2*) map for liver segmentation. Axial liver slices from 129 patients at 1.5 T were allocated to training (85%) and internal test (15%) sets. Two external test sets separately included 1.5 T data from 20 patients and 3.0 T data from 28 patients. The final T2* measurement was obtained by fitting the average signal of the extracted liver parenchyma. The agreement between T2* measurements using fully and semiautomatic parenchyma extraction methods was assessed using coefficient of variation (CoV) and Bland-Altman plots. Results: Dice of the deep network-based liver segmentation was 0.970 +/- 0.019 on the internal dataset, 0.960 +/- 0.035 on the external 1.5 T dataset, and 0.958 +/- 0.014 on the external 3.0 T dataset. The mean difference bias between T2* measurements of the fully and semiautomatic methods were separately 0.12 (95% CI: -0.37, 0.61) ms, 0.04 (95% CI: -1.0, 1.1) ms, and 0.01 (95% CI: -0.25, 0.23) ms on the three test datasets. The CoVs between the two methods were 4.2%, 4.8% and 2.0% on the internal test set and two external test sets. Conclusions: The developed fully automatic parenchyma extraction approach provides an efficient and operatorindependent T2* measurement for assessing hepatic iron content in clinical practice.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [41] Usefulness of myocardial T1 and T2 mapping with magnetic resonance in transfusion-dependent patients with low-risk myelodysplastic syndrome
    Alonso-Fernandez-Gatta, Marta
    Martin-Garcia, Ana
    Diez-Campelo, Maria
    Martin-Garcia, Agustin C.
    Lopez-Cadenas, Felix
    Sanchez, Pedro L.
    REVISTA ESPANOLA DE CARDIOLOGIA, 2021, 74 (07): : 630 - 633
  • [42] A fully automatic algorithm for assessing T2* and its certainty value for accurate cardiac and liver iron load determination
    Erik Hedstrom
    Einar Heiberg
    Gerald F Greil
    Eike Nagel
    Journal of Cardiovascular Magnetic Resonance, 15 (Suppl 1)
  • [43] Liver iron concentration and fibrosis in a cohort of transfusion-dependent patients on long-term desferrioxamine therapy
    Berdoukas, V
    Bohane, T
    Tobias, V
    De Silva, K
    Fraser, I
    Aessopos, A
    Lindeman, R
    HEMATOLOGY JOURNAL, 2005, 5 (07) : 572 - 578
  • [44] T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI
    Bernasconi, A
    Bernasconi, N
    Caramanos, Z
    Reutens, DC
    Andermann, F
    Dubeau, F
    Tampieri, D
    Pike, BG
    Arnold, DL
    NEUROIMAGE, 2000, 12 (06) : 739 - 746
  • [45] An automatic method for myocardial T2☆ curve fitting in thalassemia patients with severe iron overload
    Meloni, A.
    Positano, V.
    Gulino, L.
    Landini, L.
    Santarelli, F.
    Santamaria, V.
    Restaino, G.
    Renne, S.
    Lombardi, M.
    Pepe, A.
    EUROPEAN HEART JOURNAL, 2013, 34 : 837 - 837
  • [46] AN AUTOMATIC METHOD FOR MYOCARDIAL T2☆ CURVE FITTING IN THALASSEMIA PATIENTS WITH SEVERE IRON OVERLOAD
    Positano, V.
    Meloni, A.
    Gulino, L.
    Peluso, A.
    Romeo, M.
    Lendini, M.
    Santarelli, F.
    Landini, L.
    Vallone, A.
    Ascioti, C.
    Lombardi, M.
    Pepe, A.
    HAEMATOLOGICA, 2013, 98 : 170 - 171
  • [47] An automatic method for myocardial T2* curve fitting in thalassemia patients with severe iron overload
    Antonella Meloni
    Vincenzo Positano
    Petra Keilberg
    Maria Filomena Santarelli
    Luigi Landini
    Giuseppina Secchi
    Carmelo Fidone
    Maria Antonietta Romeo
    Letizia Gulino
    Massimo Lombardi
    Alessia Pepe
    Journal of Cardiovascular Magnetic Resonance, 15 (Suppl 1)
  • [48] Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study
    Maria I. Argyropoulou
    Dimitrios N. Kiortsis
    Loukas Astrakas
    Zafiria Metafratzi
    Nikolaos Chalissos
    Stavros C. Efremidis
    European Radiology, 2007, 17 : 3025 - 3030
  • [49] Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study
    Argyropoulou, Maria I.
    Kiortsis, Dimitrios N.
    Astrakas, Loukas
    Metafratzi, Zafiria
    Chalissos, Nikolaos
    Efremidis, Stavros C.
    EUROPEAN RADIOLOGY, 2007, 17 (12) : 3025 - 3030
  • [50] Cascade of Denoising and Mapping Neural Networks for MRI R2*Relaxometry of Iron-Loaded Liver
    Lu, Qiqi
    Wang, Changqing
    Lian, Zifeng
    Zhang, Xinyuan
    Yang, Wei
    Feng, Qianjin
    Feng, Yanqiu
    BIOENGINEERING-BASEL, 2023, 10 (02):