Estimating the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy using machine learning

被引:3
|
作者
Lu, Jie [1 ]
Huang, Xiaona [1 ]
Yue, Yanan [1 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
STRENGTH; PREDICTION; DESIGN;
D O I
10.1063/5.0201042
中图分类号
O59 [应用物理学];
学科分类号
摘要
The lattice thermal conductivity stands as a pivotal thermos-physical parameter of high-entropy alloys; nonetheless, achieving precise predictions of the lattice thermal conductivity for high-entropy alloys poses a formidable challenge due to their complex composition and structure. In this study, machine learning models were built to predict the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy based on molecular dynamic simulations. Our model shows high accuracy with R-2, mean absolute percentage error, and root mean square error of the test set is 0.91, 0.031, and 1.128 W m(-1) k(-1), respectively. In addition, a high-entropy alloy with low a lattice thermal conductivity of 2.06 W m(-1) k(-1) (Al8Cr30Co19Ni20Fe23) and with a high lattice thermal conductivity of 5.29 W m(-1) k(-1) (Al0.5Cr28.5Co25Ni25.5Fe20.5) was successfully predicted, which shows good agreement with the results from molecular dynamics simulations. The mechanisms of the thermal conductivity divergence are further explained through their phonon density of states and elastic modulus. The established model provides a powerful tool for developing high-entropy alloys with the desired properties
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Model interatomic potentials and lattice strain in a high-entropy alloy
    Farkas, Diana
    Caro, Alfredo
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3218 - 3225
  • [32] Thermal Spray High-Entropy Alloy Coatings: A Review
    Ashok Meghwal
    Ameey Anupam
    B. S. Murty
    Christopher C. Berndt
    Ravi Sankar Kottada
    Andrew Siao Ming Ang
    Journal of Thermal Spray Technology, 2020, 29 : 857 - 893
  • [33] Thermal Spray High-Entropy Alloy Coatings: A Review
    Meghwal, Ashok
    Anupam, Ameey
    Murty, B. S.
    Berndt, Christopher C.
    Kottada, Ravi Sankar
    Ang, Andrew Siao Ming
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2020, 29 (05) : 857 - 893
  • [34] High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis
    Chang, Yuxin
    Benlolo, Ian
    Bai, Yang
    Reimer, Christoff
    Zhou, Daojin
    Zhang, Hengrui
    Matsumura, Hidetoshi
    Choubisa, Hitarth
    Li, Xiao-Yan
    Chen, Wei
    Ou, Pengfei
    Tamblyn, Isaac
    Sargent, Edward H.
    MATTER, 2024, 7 (11) : 4099 - 4113
  • [35] Discovery of high-entropy ceramics via machine learning
    Kevin Kaufmann
    Daniel Maryanovsky
    William M. Mellor
    Chaoyi Zhu
    Alexander S. Rosengarten
    Tyler J. Harrington
    Corey Oses
    Cormac Toher
    Stefano Curtarolo
    Kenneth S. Vecchio
    npj Computational Materials, 6
  • [36] Predictions of Lattice Parameters in NiTi High-Entropy Shape-Memory Alloys Using Different Machine Learning Models
    Lam, Tu-Ngoc
    Jiang, Jiajun
    Hsu, Min-Cheng
    Tsai, Shr-Ruei
    Luo, Mao-Yuan
    Hsu, Shuo-Ting
    Lee, Wen-Jay
    Chen, Chung-Hao
    Huang, E-Wen
    MATERIALS, 2024, 17 (19)
  • [37] Discovery of high-entropy ceramics via machine learning
    Kaufmann, Kevin
    Maryanovsky, Daniel
    Mellor, William M.
    Zhu, Chaoyi
    Rosengarten, Alexander S.
    Harrington, Tyler J.
    Oses, Corey
    Toher, Cormac
    Curtarolo, Stefano
    Vecchio, Kenneth S.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [38] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [39] Machine Learning Assisted Design of High-Entropy Alloy Interphase Layer for Lithium Metal Batteries
    Xu, Chenxi
    Zhao, Teng
    Wang, Ke
    Yu, Tianyang
    Tang, Wangming
    Li, Li
    Wu, Feng
    Chen, Renjie
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [40] Machine learning-assisted prediction of mechanical properties of high-entropy alloy/graphene nanocomposite
    Wu, Qingqing
    Gao, Tinghong
    Liu, Guiyang
    Ma, Yong
    MATERIALS TODAY COMMUNICATIONS, 2024, 40