High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis

被引:3
|
作者
Chang, Yuxin [1 ]
Benlolo, Ian [2 ]
Bai, Yang [1 ]
Reimer, Christoff [2 ]
Zhou, Daojin [1 ]
Zhang, Hengrui [3 ]
Matsumura, Hidetoshi [4 ]
Choubisa, Hitarth [1 ]
Li, Xiao-Yan [1 ,6 ]
Chen, Wei [3 ]
Ou, Pengfei [1 ,6 ]
Tamblyn, Isaac [2 ,5 ]
Sargent, Edward H. [1 ,6 ,7 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Kings Coll Rd, Toronto, ON M5S 1A4, Canada
[2] Univ Ottawa, Dept Phys, 150 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada
[3] Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] Fujitsu Consulting Canada Inc, 155 Univ Ave 1600, Toronto, ON M5H 3B7, Canada
[5] Vector Inst Artificial Intelligence, 661 Univ Ave, Toronto, ON M5G 1M1, Canada
[6] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Elect & Comp Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金
加拿大创新基金会;
关键词
INITIO MOLECULAR-DYNAMICS; REDUCTION; TRANSITION; NANOPARTICLES;
D O I
10.1016/j.matt.2024.10.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The discovery of new electrocatalysts can be aided by density functional theory (DFT) computation of overpotentials based on the energies of chemical intermediates on prospective adsorption sites. We hypothesize that when training a machine learning model on DFT data, one could improve accuracy by introducing a quantitative measure of similarity among adsorption sites. When we augment graph neural network-based machine learning workflow using similarity as an input feature, we find that the required training dataset size is decreased from 1,600 to 800, leading to a 23 acceleration: the number of DFT calculations required to train to a given level of accuracy is cut in half. This approach identifies Fe 0.125 Co 0.125 Ni 0.229 Ir 0.229 Ru 0. 292 as a promising oxygen reduction reaction catalyst with an overpotential of 0.24 V, outperforming a Pt/C benchmark. We examine, by studying experimentally four additional HEAs, the predictive power of the computational approach.
引用
收藏
页码:4099 / 4113
页数:16
相关论文
共 50 条
  • [1] Quantum-inspired machine learning on high-energy physics data
    Timo Felser
    Marco Trenti
    Lorenzo Sestini
    Alessio Gianelle
    Davide Zuliani
    Donatella Lucchesi
    Simone Montangero
    npj Quantum Information, 7
  • [2] Quantum-inspired machine learning on high-energy physics data
    Felser, Timo
    Trenti, Marco
    Sestini, Lorenzo
    Gianelle, Alessio
    Zuliani, Davide
    Lucchesi, Donatella
    Montangero, Simone
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [3] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84
  • [4] A dimensionally augmented and physics-informed machine learning for quality prediction of additively manufactured high-entropy alloy
    Wang, Haijie
    Li, Bo
    Xuan, Fu-Zhen
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 307
  • [5] Estimating the lattice thermal conductivity of AlCoCrNiFe high-entropy alloy using machine learning
    Lu, Jie
    Huang, Xiaona
    Yue, Yanan
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (13)
  • [6] Machine learning enabled processing map generation for high-entropy alloy
    Kumar, Saphal
    Pradhan, Hrutidipan
    Shah, Naishalkumar
    Rahul, M. R.
    Phanikumar, Gandham
    SCRIPTA MATERIALIA, 2023, 234
  • [7] Quantum machine-learning phase prediction of high-entropy alloys
    Brown, Payden
    Zhuang, Houlong
    MATERIALS TODAY, 2023, 63 : 18 - 31
  • [8] Machine Learning Approach to Community Detection in a High-Entropy Alloy Interaction Network
    Nia, Raheleh Ghouchan Nezhad Noor
    Jalali, Mehrdad
    Mail, Matthias
    Ivanisenko, Yulia
    Kuebel, Christian
    ACS OMEGA, 2022, 7 (15): : 12978 - 12992
  • [9] Correlating Nitrate Adsorption with the Local Environments of FeCoNiCuZn High-Entropy Alloy Catalysts Using Machine Learning
    He, Xiang
    LANGMUIR, 2024, 40 (30) : 15503 - 15511
  • [10] Quantum-Inspired Machine Learning Framework using a Physics-based Ising Solver Chip
    Khot, Ameya
    Kim, Taesic
    Akash, Alve Rahman
    Kim, Chris H.
    Moy, William
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024, 2024,