Balanced Gradient Penalty Improves Deep Long-Tailed Learning

被引:2
|
作者
Wang, Dong [1 ]
Liu, Yicheng [2 ]
Fang, Liangji [3 ]
Shang, Fanhua [4 ]
Liu, Yuanyuan [1 ]
Liu, Hongying [1 ,5 ]
机构
[1] Xidian Univ, Xian, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[3] SenseTime Res, Hong Kong, Peoples R China
[4] Tianjin Univ, Tianjin, Peoples R China
[5] Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-Tailed Learning; Flat Minima; Regularization;
D O I
10.1145/3503161.3547763
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In recent years, deep learning has achieved a great success in various image recognition tasks. However, the long-tailed setting over a semantic class plays a leading role in real-world applications. Common methods focus on optimization on balanced distribution or naive models. Few works explore long-tailed learning from a deep learning-based generalization perspective. The loss landscape on long-tailed learning is first investigated in this work. Empirical results show that sharpness-aware optimizers work not well on long-tailed learning. Because they do not take class priors into consideration, and they fail to improve performance of few-shot classes. To better guide the network and explicitly alleviate sharpness without extra computational burden, we develop a universal Balanced Gradient Penalty (BGP) method. Surprisingly, our BGP method does not need the detailed class priors and preserves privacy. Our new algorithm BGP, as a regularization loss, can achieve the state-of-the-art results on various image datasets (i.e., CIFARLT, ImageNet-LT and iNaturalist-2018) in the settings of different imbalance ratios.
引用
收藏
页码:5093 / 5101
页数:9
相关论文
共 50 条
  • [41] Long-tailed recognition via key attribute learning
    Fu, Yu
    Han, Jungong
    Chang, Xiang
    Chen, Changrui
    Shang, Changjing
    Shen, Qiang
    NEUROCOMPUTING, 2025, 627
  • [42] Long-Tailed Learning as Multi-Objective Optimization
    Li, Weiqi
    Lyu, Fan
    Shang, Fanhua
    Wan, Liang
    Feng, Wei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3190 - 3198
  • [43] Few-shot learning with long-tailed labels
    Zhang, Hongliang
    Chen, Shuo
    Luo, Lei
    Yang, Jiang
    PATTERN RECOGNITION, 2024, 156
  • [44] Targeted Supervised Contrastive Learning for Long-Tailed Recognition
    Li, Tianhong
    Cao, Peng
    Yuan, Yuan
    Fan, Lijie
    Yang, Yuzhe
    Feris, Rogerio
    Indyk, Piotr
    Katabi, Dina
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6908 - 6918
  • [45] Towards Effective Collaborative Learning in Long-Tailed Recognition
    Xu, Zhengzhuo
    Chai, Zenghao
    Xu, Chengyin
    Yuan, Chun
    Yang, Haiqin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3754 - 3764
  • [46] Nested Collaborative Learning for Long-Tailed Visual Recognition
    Li, Jun
    Tan, Zichang
    Wan, Jun
    Lei, Zhen
    Guo, Guodong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6939 - 6948
  • [47] Probabilistic Contrastive Learning for Long-Tailed Visual Recognition
    Du, Chaoqun
    Wang, Yulin
    Song, Shiji
    Huang, Gao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 5890 - 5904
  • [48] Learning from Reduced Labels for Long-Tailed Data
    Wei, Meng
    Li, Zhongnian
    Zhou, Yong
    Xu, Xinzheng
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 111 - 119
  • [49] Invariant Feature Learning for Generalized Long-Tailed Classification
    Tang, Kaihua
    Tao, Mingyuan
    Qi, Jiaxin
    Liu, Zhenguang
    Zhang, Hanwang
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 709 - 726
  • [50] Exploring the auxiliary learning for long-tailed visual recognition
    Zhang, Junjie
    Liu, Lingqiao
    Wang, Peng
    Zhang, Jian
    NEUROCOMPUTING, 2021, 449 : 303 - 314