Probabilistic Contrastive Learning for Long-Tailed Visual Recognition

被引:2
|
作者
Du, Chaoqun [1 ]
Wang, Yulin [1 ]
Song, Shiji [1 ]
Huang, Gao [1 ]
机构
[1] Tsinghua Univ, Dept Automat, BNRist, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Contrastive learning; long-tailed visual recognition; representation learning; semi-supervised learning; IMAGE;
D O I
10.1109/TPAMI.2024.3369102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long-tailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples. Such imbalance issue considerably impairs the performance of standard supervised learning algorithms, which are mainly designed for balanced training sets. Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance. However, the performance of supervised contrastive learning is plagued by an inherent challenge: it necessitates sufficiently large batches of training data to construct contrastive pairs that cover all categories, yet this requirement is difficult to meet in the context of class-imbalanced data. To overcome this obstacle, we propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space, and samples contrastive pairs accordingly. In fact, estimating the distributions of all classes using features in a small batch, particularly for imbalanced data, is not feasible. Our key idea is to introduce a reasonable and simple assumption that the normalized features in contrastive learning follow a mixture of von Mises-Fisher (vMF) distributions on unit space, which brings two-fold benefits. First, the distribution parameters can be estimated using only the first sample moment, which can be efficiently computed in an online manner across different batches. Second, based on the estimated distribution, the vMF distribution allows us to sample an infinite number of contrastive pairs and derive a closed form of the expected contrastive loss for efficient optimization. Other than long-tailed problems, ProCo can be directly applied to semi-supervised learning by generating pseudo-labels for unlabeled data, which can subsequently be utilized to estimate the distribution of the samples inversely. Theoretically, we analyze the error bound of ProCo. Empirically, extensive experimental results on supervised/semi-supervised visual recognition and object detection tasks demonstrate that ProCo consistently outperforms existing methods across various datasets.
引用
收藏
页码:5890 / 5904
页数:15
相关论文
共 50 条
  • [1] Balanced Contrastive Learning for Long-Tailed Visual Recognition
    Zhu, Jianggang
    Wang, Zheng
    Chen, Jingjing
    Chen, Yi-Ping Phoebe
    Jiang, Yu-Gang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6898 - 6907
  • [2] Balanced clustering contrastive learning for long-tailed visual recognition
    Byeong-il Kim
    Byoung Chul Ko
    Pattern Analysis and Applications, 2025, 28 (1)
  • [3] Decoupled Contrastive Learning for Long-Tailed Recognition
    Xuan, Shiyu
    Zhang, Shiliang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6396 - 6403
  • [4] bt-vMF Contrastive and Collaborative Learning for Long-Tailed Visual Recognition
    Du, Jinhao
    Luo, Guibo
    Zhu, Yuesheng
    Bai, Zhiqiang
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 573 - 577
  • [5] Targeted Supervised Contrastive Learning for Long-Tailed Recognition
    Li, Tianhong
    Cao, Peng
    Yuan, Yuan
    Fan, Lijie
    Yang, Yuzhe
    Feris, Rogerio
    Indyk, Piotr
    Katabi, Dina
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6908 - 6918
  • [6] Subclass-balancing Contrastive Learning for Long-tailed Recognition
    Hou, Chengkai
    Zhang, Jieyu
    Wang, Haonan
    Zhou, Tianyi
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 5372 - 5384
  • [7] Contrastive dual-branch network for long-tailed visual recognition
    Jie Miao
    Junhai Zhai
    Ling Han
    Pattern Analysis and Applications, 2025, 28 (1)
  • [8] Nested Collaborative Learning for Long-Tailed Visual Recognition
    Li, Jun
    Tan, Zichang
    Wan, Jun
    Lei, Zhen
    Guo, Guodong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6939 - 6948
  • [9] Exploring the auxiliary learning for long-tailed visual recognition
    Zhang, Junjie
    Liu, Lingqiao
    Wang, Peng
    Zhang, Jian
    NEUROCOMPUTING, 2021, 449 : 303 - 314
  • [10] Decoupled Contrastive Learning for Long-Tailed Distribution
    Chen, Xiaohua
    Zhou, Yucan
    Wang, Lin
    Wu, Dayan
    Zhang, Wanqian
    Li, Bo
    Wang, Weiping
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 3 - 15