Probabilistic Contrastive Learning for Long-Tailed Visual Recognition

被引:2
|
作者
Du, Chaoqun [1 ]
Wang, Yulin [1 ]
Song, Shiji [1 ]
Huang, Gao [1 ]
机构
[1] Tsinghua Univ, Dept Automat, BNRist, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Contrastive learning; long-tailed visual recognition; representation learning; semi-supervised learning; IMAGE;
D O I
10.1109/TPAMI.2024.3369102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long-tailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples. Such imbalance issue considerably impairs the performance of standard supervised learning algorithms, which are mainly designed for balanced training sets. Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance. However, the performance of supervised contrastive learning is plagued by an inherent challenge: it necessitates sufficiently large batches of training data to construct contrastive pairs that cover all categories, yet this requirement is difficult to meet in the context of class-imbalanced data. To overcome this obstacle, we propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space, and samples contrastive pairs accordingly. In fact, estimating the distributions of all classes using features in a small batch, particularly for imbalanced data, is not feasible. Our key idea is to introduce a reasonable and simple assumption that the normalized features in contrastive learning follow a mixture of von Mises-Fisher (vMF) distributions on unit space, which brings two-fold benefits. First, the distribution parameters can be estimated using only the first sample moment, which can be efficiently computed in an online manner across different batches. Second, based on the estimated distribution, the vMF distribution allows us to sample an infinite number of contrastive pairs and derive a closed form of the expected contrastive loss for efficient optimization. Other than long-tailed problems, ProCo can be directly applied to semi-supervised learning by generating pseudo-labels for unlabeled data, which can subsequently be utilized to estimate the distribution of the samples inversely. Theoretically, we analyze the error bound of ProCo. Empirically, extensive experimental results on supervised/semi-supervised visual recognition and object detection tasks demonstrate that ProCo consistently outperforms existing methods across various datasets.
引用
收藏
页码:5890 / 5904
页数:15
相关论文
共 50 条
  • [31] Towards Effective Collaborative Learning in Long-Tailed Recognition
    Xu, Zhengzhuo
    Chai, Zenghao
    Xu, Chengyin
    Yuan, Chun
    Yang, Haiqin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3754 - 3764
  • [32] A Long-Tailed Image Classification Method Based on Enhanced Contrastive Visual Language
    Song, Ying
    Li, Mengxing
    Wang, Bo
    SENSORS, 2023, 23 (15)
  • [33] Key Point Sensitive Loss for Long-Tailed Visual Recognition
    Li, Mengke
    Cheung, Yiu-Ming
    Hu, Zhikai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4812 - 4825
  • [34] Feature Re-Balancing for Long-Tailed Visual Recognition
    Zhao, Yan
    Chen, Weicong
    Huang, Kai
    Zhu, Jihong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [35] FCC: Feature Clusters Compression for Long-Tailed Visual Recognition
    Li, Jian
    Meng, Ziyao
    Shi, Daqian
    Song, Rui
    Diao, Xiaolei
    Wang, Jingwen
    Xu, Hao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24080 - 24089
  • [36] Hierarchical block aggregation network for long-tailed visual recognition
    Pang, Shanmin
    Wang, Weiye
    Zhang, Renzhong
    Hao, Wenyu
    NEUROCOMPUTING, 2023, 549
  • [37] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition
    Li, Shuang
    Gong, Kaixiong
    Liu, Chi Harold
    Wang, Yulin
    Qiao, Feng
    Cheng, Xinjing
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5208 - 5217
  • [38] Adaptive Logit Adjustment Loss for Long-Tailed Visual Recognition
    Zhao, Yan
    Chen, Weicong
    Tan, Xu
    Huang, Kai
    Zhu, Jihong
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3472 - 3480
  • [39] WeedCLR: Weed contrastive learning through visual representations with class-optimized loss in long-tailed datasets
    Saleh, Alzayat
    Olsen, Alex
    Wood, Jake
    Philippa, Bronson
    Rahimi Azghadi, Mostafa
    Computers and Electronics in Agriculture, 2024, 227
  • [40] Progressively Balanced Supervised Contrastive Representation Learning for Long-Tailed Fault Diagnosis
    Peng, Peng
    Lu, Jiaxun
    Tao, Shuting
    Ma, Ke
    Zhang, Yi
    Wang, Hongwei
    Zhang, Heming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71