L2 Concentration of Blow-Up Solutions for the Nonlinear Schrödinger Equation with an Inhomogeneous Combined Non-Linearity

被引:0
|
作者
Xie, Baoli [1 ]
Peng, Congming [1 ]
Ma, Caochuan [1 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741000, Peoples R China
关键词
inhomogeneous Schrodinger equation; L-2; concentration; limit behaviour; GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATION; MASS;
D O I
10.3390/math12071060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies the Schrodinger equation with an inhomogeneous combined term i partial derivative(t)u-(-Delta)(s)u+lambda(1)|x|(-b)|u|(p)u+lambda(2)|u|(q)u=0, where s is an element of(1/2,1), lambda(1),lambda(2 )=+/- 1,0< b< {2s,N} and p, q> 0. We study the limit behaviour of the infinite blow-up solution at the blow-up time. When the parameters p,q,lambda(1) and lambda(2) have different values, we obtain the nonexistence of a strong limit for the non-radial solution and the L-2 concentration for the radial solution. Interestingly, we find that the mass of the finite time blow-up solutions are concentrated in different ways for different parameters.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Compactness at blow-up time for L2 solutions of the critical nonlinear Schrodinger equation in 2D
    Merle, F
    Vega, L
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (08) : 399 - 425
  • [32] Small data blow-up of L2 or H1-solution for the semilinear Schrödinger equation without gauge invariance
    Masahiro Ikeda
    Takahisa Inui
    Journal of Evolution Equations, 2015, 15 : 571 - 581
  • [33] Blow-up dynamics of L2-critical inhomogeneous nonlinear Schrodinger equation
    Peng, Congming
    Zhao, Dun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9408 - 9421
  • [34] On Blow-Up and Explicit Soliton Solutions for Coupled Variable Coefficient Nonlinear Schrödinger Equations
    Escorcia, Jose M.
    Suazo, Erwin
    MATHEMATICS, 2024, 12 (17)
  • [35] Blow-Up Solutions of Two-Coupled Nonlinear Schrödinger Equations in the Radial Case
    Qianqian Bai
    Xiaoguang Li
    Li Zhang
    Acta Mathematica Scientia, 2023, 43 : 1852 - 1864
  • [36] BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHR?DINGER EQUATIONS IN THE RADIAL CASE
    白欠欠
    李晓光
    张莉
    ActaMathematicaScientia, 2023, 43 (04) : 1852 - 1864
  • [37] The regularity properties and blow-up of the solutions for nonlocal Schrödinger equations
    Shakhmurov, Veli B.
    Shahmurov, Rishad
    REVIEWS IN MATHEMATICAL PHYSICS, 2025, 37 (02)
  • [38] On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation
    Luccas Campos
    Mykael Cardoso
    Journal of Dynamics and Differential Equations, 2022, 34 : 2347 - 2369
  • [39] Blow-up criteria for the inhomogeneous nonlinear Schrodinger equation
    Yang, Han
    Zhu, Shihui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [40] Localized solutions of inhomogeneous saturable nonlinear Schrödinger equation
    Maurilho R. da Rocha
    Ardiley T. Avelar
    Wesley B. Cardoso
    Nonlinear Dynamics, 2023, 111 : 4769 - 4777