On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation

被引:0
|
作者
Luccas Campos
Mykael Cardoso
机构
[1] Universidade Federal de Minas Gerais,ICEx
[2] Universidade Federal do Piauí,Department of Mathematics, CCN
[3] Ininga,undefined
关键词
Inhomogeneous nonlinear Schrödinger equation; Mass concentration; Critical norm concentration; Concentration-compactness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}i∂tu+Δu+|x|-b|u|2σu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$\end{document}and show the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm concentration for the finite time blow-up solutions in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-critical case, σ=2-bN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma =\frac{2-b}{N}$$\end{document}. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case 2-bN<σ<2-bN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$\end{document}, we show results regarding the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting.
引用
收藏
页码:2347 / 2369
页数:22
相关论文
共 50 条