Negative Type and Bi-lipschitz Embeddings into Hilbert Space

被引:0
|
作者
Robertson, Gavin [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Negative type; Hilbert space; Bi-lipschitz embedding; FINITE METRIC-SPACES; GRAPHS; GAP;
D O I
10.1007/s40840-024-01736-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The usual theory of negative type (andp-negative type) is heavily dependent on anembedding result of Schoenberg, which states that a metric space isometrically embedsin some Hilbert space if and only if it has 2-negative type. A generalisation of thisembedding result to the setting of bi-lipschitz embeddings was given by Linial, Londonand Rabinovich. In this article we use this newer embedding result to define the conceptof distortedp-negative type and extend much of the known theory ofp-negative typeto the setting of bi-lipschitz embeddings. In particular we show that a metric space(X,dX)hasp-negative type with distortionC(0 <= p<infinity,1 <= C<infinity) if and onlyif(X,d(X)(p/2))admits a bi-lipschitz embedding into some Hilbert space with distortionat mostC. Analogues of strictp-negative type and polygonal equalities in this newsetting are given and systematically studied. Finally, we provide explicit examples ofthese concepts in the bi-lipschitz setting for the bipartite graphsKm,n
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A CHARACTERIZATION OF BI-LIPSCHITZ EMBEDDABLE METRIC SPACES IN TERMS OF LOCAL BI-LIPSCHITZ EMBEDDABILITY
    Seo, Jeehyeon
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (06) : 1179 - 1202
  • [22] Bi-Lipschitz parameterization of surfaces
    Mario Bonk
    Urs Lang
    Mathematische Annalen, 2003, 327 : 135 - 169
  • [23] Bi-Lipschitz Bijections of Z
    Benjamini, Itai
    Shamov, Alexander
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 313 - 324
  • [24] Bi-Lipschitz Sufficiency of Jets
    Valette, Guillaume
    JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) : 963 - 993
  • [25] On Bi-lipschitz type inequalities for quasiconformal harmonic mappings
    Partyka, Dariusz
    Sakan, Ken-Ichi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2007, 32 (02) : 579 - 594
  • [26] Bi-Lipschitz homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones
    Sampaio, J. Edson
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (02): : 553 - 559
  • [27] Bi-Lipschitz Sufficiency of Jets
    Guillaume Valette
    Journal of Geometric Analysis, 2009, 19 : 963 - 993
  • [28] Bi-Lipschitz extensions in the plane
    MacManus, P
    JOURNAL D ANALYSE MATHEMATIQUE, 1995, 66 : 85 - 115
  • [29] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27
  • [30] BI-LIPSCHITZ INVARIANCE OF THE MULTIPLICITY
    Fernandes, Alexandre
    Sampaio, José Edson
    arXiv, 2022,