The usual theory of negative type (andp-negative type) is heavily dependent on anembedding result of Schoenberg, which states that a metric space isometrically embedsin some Hilbert space if and only if it has 2-negative type. A generalisation of thisembedding result to the setting of bi-lipschitz embeddings was given by Linial, Londonand Rabinovich. In this article we use this newer embedding result to define the conceptof distortedp-negative type and extend much of the known theory ofp-negative typeto the setting of bi-lipschitz embeddings. In particular we show that a metric space(X,dX)hasp-negative type with distortionC(0 <= p<infinity,1 <= C<infinity) if and onlyif(X,d(X)(p/2))admits a bi-lipschitz embedding into some Hilbert space with distortionat mostC. Analogues of strictp-negative type and polygonal equalities in this newsetting are given and systematically studied. Finally, we provide explicit examples ofthese concepts in the bi-lipschitz setting for the bipartite graphsKm,n
机构:
Departamento de Matemática, Universidade Federal do Ceará, Av. Humberto Monte, s/n Campus do Pici - Bloco 914, Fortaleza-CE,60455-760, BrazilDepartamento de Matemática, Universidade Federal do Ceará, Av. Humberto Monte, s/n Campus do Pici - Bloco 914, Fortaleza-CE,60455-760, Brazil
Fernandes, Alexandre
Sampaio, José Edson
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidade Federal do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, Fortaleza-CE,60440-900, BrazilDepartamento de Matemática, Universidade Federal do Ceará, Av. Humberto Monte, s/n Campus do Pici - Bloco 914, Fortaleza-CE,60455-760, Brazil