<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math><alternatives><mml:math><mml:mi>μ</mml:mi></mml:math><inline-graphic xlink:href="goudarzi-ieq1-3332308.gif"/></alternatives></inline-formula>-DDRL: A QoS-Aware Distributed Deep Reinforcement Learning Technique for Service Offloading in Fog Computing Environments

被引:0
|
作者
Goudarzi, Mohammad [1 ]
Rodriguez, Maria A. [2 ]
Sarvi, Majid [3 ]
Buyya, Rajkumar [1 ]
机构
[1] Univ Melbourne, Sch Comp & Informat Syst, Cloud Comp & Distributed Syst CLOUDS Lab, Parkville, Vic 3052, Australia
[2] Univ Melbourne, Sch Comp & Informat Syst, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3052, Australia
关键词
Edge computing; Internet of Things; Quality of service; Trajectory; Servers; Stochastic processes; Costs; Deep Reinforcement Learning (DRL); Fog/Edge Computing; Internet of Things (IoT); QoS- aware service Offloading; EDGE; PLACEMENT;
D O I
10.1109/TSC.2023.3332308
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fog and Edge computing extend cloud services to the proximity of end users, allowing many Internet of Things (IoT) use cases, particularly latency-critical applications. Smart devices, such as traffic and surveillance cameras, often do not have sufficient resources to process computation-intensive and latency-critical services. Hence, the constituent parts of services can be offloaded to nearby Edge/Fog resources for processing and storage. However, making offloading decisions for complex services in highly stochastic and dynamic environments is an important, yet difficult task. Recently, Deep Reinforcement Learning (DRL) has been used in many complex service offloading problems; however, existing techniques are most suitable for centralized environments, and their convergence to the best-suitable solutions is slow. In addition, constituent parts of services often have predefined data dependencies and quality of service constraints, which further intensify the complexity of service offloading. To solve these issues, we propose a distributed DRL technique following the actor-critic architecture based on Asynchronous Proximal Policy Optimization (APPO) to achieve efficient and diverse distributed experience trajectory generation. Also, we employ PPO clipping and V-trace techniques for off-policy correction for faster convergence to the most suitable service offloading solutions. The results obtained demonstrate that our technique converges quickly, offers high scalability and adaptability, and outperforms its counterparts by improving the execution time of heterogeneous services.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [21] Bandwidth-Enhanced High-Gain Microstrip Patch Antenna Under TM<inline-formula><tex-math notation="LaTeX">$_{\text{30}}$</tex-math></inline-formula> and TM<inline-formula><tex-math notation="LaTeX">$_{\text{50}}$</tex-math></inline-formula> Dual-Mode Resonances
    Wen, Juan
    Xie, Danpeng
    Zhu, Lei
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (10): : 1976 - 1980
  • [22] Effect of Vortex Annihilation Lines on Current-Voltage Characteristics of High-<inline-formula><tex-math notation="LaTeX">$T_{c}$</tex-math></inline-formula> Superconducting Wires
    Marelly, Offek
    Fuzailov, Nikita
    Burlachkov, Leonid
    Wolfus, Shuki
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (03)
  • [23] A Quadrature Balanced <inline-formula> <tex-math notation="LaTeX">$N$</tex-math> </inline-formula>-Path Receiver for Frequency Division Duplex With Thermal and Phase Noise Cancellation Under Antenna VSWR
    Zolkov, Erez
    Cohen, Emanuel
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (06) : 3468 - 3475
  • [24] Accelerated Schemes for the <inline-formula><tex-math notation="LaTeX">$L_1/L_2$</tex-math></inline-formula> Minimization
    Wang, Chao
    Yan, Ming
    Rahimi, Yaghoub
    Lou, Yifei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 2660 - 2669
  • [25] H-<inline-formula> <tex-math notation="LaTeX">$\Phi$ </tex-math></inline-formula> Field Formulation With Lumped Sources and Unbounded Domains
    Casati, Daniele
    Smajic, Jasmin
    Hiptmair, Ralf
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (01)
  • [26] A Low-Power Low-Noise <inline-formula> <tex-math notation="LaTeX">$W$</tex-math> </inline-formula>-band LNA in 90-nm CMOS Process With Source Degeneration Technique
    Huang, Pin-Hsuan
    Chiu, Chia-Sung
    Huang, Guo-Wei
    Chen, Kun-Ming
    Wu, Lin-Kun
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2024, 34 (01): : 69 - 71
  • [27] Compact Bandpass Filters With Low Loss and TZs Based on 1/<inline-formula> <tex-math notation="LaTeX">$n$</tex-math> </inline-formula> Mode Circle-SIW in Through Silicon Vias (TSVs) Technology
    Fan, Chenhui
    Liu, Xiaoxian
    Liu, Nuo
    Zhu, Zhangming
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (09) : 5095 - 5105
  • [28] A 276–312-GHz (<inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula>12) Frequency Multiplier Chain With Milliwatt Level Output Power in 65-nm CMOS Technology
    Wu, Weiping
    Wang, Jingze
    Chen, Shi
    Chen, Shulan
    Bao, Xun
    Wang, Yan
    Zhang, Lei
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (11): : 1556 - 1559
  • [29] Implementing Remote Doping and Suppressed Scattering in MoS<inline-formula> <tex-math notation="LaTeX">$_{\text{2}}$</tex-math> </inline-formula> Field-Effect Transistor Using CMOS-Compatible Process
    Ma, Weiming
    Zhang, Tianjiao
    Hu, Jiayang
    Kang, Yu
    Li, Hanxi
    Zhou, Jiachao
    He, Qian
    Wang, Hailiang
    Xu, Yang
    Zhao, Yuda
    Yu, Bin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (05) : 3315 - 3321
  • [30] Inversion of Wave Parameters With Shore-Based Coherent <inline-formula><tex-math notation="LaTeX">$S$</tex-math></inline-formula>-Band Radar Using Quasi-Binary Variational Mode Decomposition
    Hu, Zhongqian
    Chen, Zezong
    Zhao, Chen
    Chen, Xi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 8570 - 8580