Feature Extraction for Polyp Detection in Wireless Capsule Endoscopy Video Frames

被引:0
|
作者
Delagah B. [1 ]
Hassanpour H. [1 ]
机构
[1] Image Processing and Data Mining Lab, Shahrood University of Technology, Shahrud
关键词
All Open Access; Hybrid Gold;
D O I
10.1155/2023/6076514
中图分类号
学科分类号
摘要
Wireless capsule endoscopy (WCE) is a technology for filming the gastrointestinal (GI) tract to find abnormalities such as tumors, polyps, and bleeding. This paper proposes a new method based on hand-crafted features to detect polyps in WCE frames. A polyp has a convex surface containing pixel values with a specified Gaussian distribution. If a polyp exists in the WCE image, edges will be seen at the border of the occupied area. Since WCE images often suffer from low illumination, a histogram equalization (HE) technique can be used to enhance the image. In this paper, we initially find probable polyp edges via thresholding. Then, we use the edges to find the region of interest (ROI). Then, the mean, standard deviation (STD), and division of mean by STD from the ROI are computed as features to discriminate between polyp and nonpolyp using a support vector machine (SVM). The evaluation results on the Kvasir-Capsule dataset show 99% accuracy for the proposed method in polyp detection. Furthermore, the proposed method runs at a real-time speed of ∼0.031 seconds detection for each image. © 2023 Bardia Delagah and Hamid Hassanpour.
引用
收藏
相关论文
共 50 条
  • [31] Wireless Capsule Endoscopy Color Video Segmentation
    Mackiewicz, Michal
    Berens, Jeff
    Fisher, Mark
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (12) : 1769 - 1781
  • [32] Erratum to: Advances in Wireless Video Capsule Endoscopy
    Muzaffer Kanaan
    Hamed Farhadi
    International Journal of Wireless Information Networks, 2017, 24 (2) : 168 - 168
  • [33] Summarization of Wireless Capsule Endoscopy Video Using Deep Feature Matching and Motion Analysis
    Sushma, B.
    Aparna, P.
    IEEE ACCESS, 2021, 9 : 13691 - 13703
  • [34] Wireless Capsule Endoscopy Video Automatic Segmentation
    Zhou, Ran
    Li, Baopu
    Sun, Zhe
    Hu, Chao
    Meng, Max Q. -H
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [35] RF Localization for Wireless Video Capsule Endoscopy
    Pahlavan, K.
    Bao, G.
    Ye, Y.
    Makarov, S.
    Khan, U.
    Swar, P.
    Cave, D.
    Karellas, A.
    Krishnamurthy, P.
    Sayrafian, K.
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2012, 19 (04) : 326 - 340
  • [36] Polyp follow-Up in an Intelligent Wireless Capsule Endoscopy
    Chuquimia, Orlando
    Pinna, Andrea
    Dray, Xavier
    Granado, Bertrand
    2019 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2019), 2019,
  • [37] RF Localization for Wireless Video Capsule Endoscopy
    K. Pahlavan
    G. Bao
    Y. Ye
    S. Makarov
    U. Khan
    P. Swar
    D. Cave
    A. Karellas
    P. Krishnamurthy
    K. Sayrafian
    International Journal of Wireless Information Networks, 2012, 19 (4) : 326 - 340
  • [38] Deep learning for polyp recognition in wireless capsule endoscopy images
    Yuan, Yixuan
    Meng, Max Q. -H.
    MEDICAL PHYSICS, 2017, 44 (04) : 1379 - 1389
  • [39] An unexpected detection by capsule endoscopy (with video)
    Adler, Douglas G.
    Othman, Mohamed O.
    Tyberg, Amy
    GASTROINTESTINAL ENDOSCOPY, 2023, 97 (04) : 802 - 803
  • [40] Helminths detection with video capsule endoscopy
    Akopova, A. O.
    Mikcheeva, O. M.
    Shcherbakov, P. L.
    Parfenov, A., I
    TERAPEVTICHESKII ARKHIV, 2019, 91 (11) : 72 - 74