Drowsiness detection in real-time via convolutional neural networks and transfer learning

被引:0
|
作者
Salem, Dina [1 ]
Waleed, Mohamed [1 ]
机构
[1] Department of Computer and Systems, Faculty of Engineering, MUST University, 6th of October City, Egypt
来源
关键词
Convolutional neural networks;
D O I
10.1186/s44147-024-00457-z
中图分类号
学科分类号
摘要
Drowsiness detection is a critical aspect of ensuring safety in various domains, including transportation, online learning, and multimedia consumption. This research paper presents a comprehensive investigation into drowsiness detection methods, with a specific focus on utilizing convolutional neural networks (CNN) and transfer learning. Notably, the proposed study extends beyond theoretical exploration to practical application, as we have developed a user-friendly mobile application incorporating these advanced techniques. Diverse datasets are integrated to systematically evaluate the implemented model, and the results showcase its remarkable effectiveness. For both multi-class and binary classification scenarios, our drowsiness detection system achieves impressive accuracy rates ranging from 90 to 99.86%. This research not only contributes to the academic understanding of drowsiness detection but also highlights the successful implementation of such methodologies in real-world scenarios through the development of our application. © The Author(s) 2024.
引用
下载
收藏
相关论文
共 50 条
  • [1] Convolutional neural networks for real-time epileptic seizure detection
    Achilles, Felix
    Tombari, Federico
    Belagiannis, Vasileios
    Loesch, Anna Mira
    Noachtar, Soheyl
    Navab, Nassir
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 264 - 269
  • [2] Convolutional Neural Networks for Real-Time and Wireless Damage Detection
    Avci, Onur
    Abdeljaber, Osama
    Kiranyaz, Serkan
    Inman, Daniel
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, IMAC 2019, 2020, : 129 - 136
  • [3] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    FRONTIERS IN BIG DATA, 2023, 6
  • [4] Real-Time Pedestrian Detection Using Convolutional Neural Networks
    Kuang, Ping
    Ma, Tingsong
    Li, Fan
    Chen, Ziwei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [5] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [6] Transfer learning for real-time crater detection on asteroids using a Fully Convolutional Neural Network
    Latorre, F.
    Spiller, D.
    Sasidharan, S. T.
    Basheer, S.
    Curti, F.
    ICARUS, 2023, 394
  • [7] LEARNING A REAL-TIME GENERIC TRACKER USING CONVOLUTIONAL NEURAL NETWORKS
    Zhu, Linnan
    Yang, Lingxiao
    Zhang, David
    Zhang, Lei
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 1219 - 1224
  • [8] Real-time gastric polyp detection using convolutional neural networks
    Zhang, Xu
    Chen, Fei
    Yu, Tao
    An, Jiye
    Huang, Zhengxing
    Liu, Jiquan
    Hu, Weiling
    Wang, Liangjing
    Duan, Huilong
    Si, Jianmin
    PLOS ONE, 2019, 14 (03):
  • [9] Real-time lidar feature detection using convolutional neural networks
    McGill, Matthew J.
    Roberson, Stephen D.
    Ziegler, William
    Smith, Ron
    Yorks, John E.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX, 2024, 13049
  • [10] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodriguez, Alba
    Dominguez-Carbajales, Ruben
    Campos-Tato, Fernando
    Herrero, Jesus
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sanchez, Eloy
    Iglesias, Agueda
    Cubiella, Joaquin
    Fdez-Riverola, Florentino
    Lopez-Fernandez, Hugo
    Reboiro-Jato, Miguel
    Glez-Pena, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10375 - 10396